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Abstract- In this study, closed form stress functions of a curved beam are :'determineé
by theory of elasticity. The beam is subjected to a single force arbxtranly directed at the
free end. Stresses are plotteci for various sections of the beam and various dlrections of
the force
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1. INTRODUCTION

One of the widely used members in frame structures is beams. Many investigators
have studied on beams recently. Tutuncu [1] has found stress components and
deflections of an orthotropic curved beam subjected to pure moment and shear load. The
equations that was found have been applied to rings which can be modeled as a curved
beam. Karakuzu et al. [2] have investigated elasto-plastic stress analysis in a composite
beam loaded uniformly or by a single force at the free end by using an analytical
solution, Ozcan [3] has investigated elasto-plastic stress analysis in steel fiber
reinforced thermoplastic orthotropic cantilever beam subjected to single force at the free
end of the beam. Ever et al. [4] have obtained shear correction factor and deflection of a
composite beam having I cross section. '

In this study, the stress components of a curved beam having a rectangular cross section
are determined by theory of elasticity. The beam is subjected to a single force which is
arbitrarily directed at free end. The stress distributions are plotted for.different sections
and force directions.

2. DETERMINATION OF STRESS FUNCTIONS

Stress components in polar coordinates in theory of elasticity are givenas [S];
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The bending moment at any cross section of the curved beam is proportional to Sin8

and Cos6 due to P.Cosa and P. Smoc respectively (Fzgure 1). Therefore, solutxon of the
problem is obtained with the use of a stress functum of the type

¢ = (r)cosf+E,(r)sind (2)
where §,(r)and {,(r)are given in [5].

§1(r)mAr3+£+Cr+Dr1nr (3a)
r : :

gz(r)mEr3+£+Gr+Hrinr : (3b)

where A B,.. ,H are’ arbItrary constants found from the boundary conditions. As a result,
the stress function is;

¢ = (Ar® +§— +Cr+Drlnr)cos® + (Er’ +£+Gr + Hrinr)sin@ 4)
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Figure 1. Tlustration of the curved beam

If equation (4) is substituted into Eq.(1a, 1b and lc), the following stresses are obtained;

= (2Arwg£+2)0089 +(2Er—2—F+£)Sin9 (5
Poor Poor

oy = (6Ar+%:i+2)cose +(6Er+2—f+ﬁ)sme (6)
} P r r
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7,5 = (2Ar -~~2—§+-—-)Sm9 +(=2Er + -2-5 +—)cosf | )

In the above stress components, the eight coefﬁcmnts are unknown In order to find, we
have to have elght boundary conditions. These are R
1. G, at r=a

2. 0O, at r=b,
3. 7,=0atr=a,

4. ’rrg - 0 at r““-—-“"b,

b ! .
5. [optdr=Psn@at@=0"

a

b
6. [ogtrdr=0at=0°
toa

b
7. [7.ptdr=Pcosa at 8 =0°

a

8. 'Jrretdr = Psino at 6 = 90°

When these boundary conditions are apphed to equations (3), (6) and (7), the
coefficients are found as follows;

A= Psing ' )

2[~a® +b? —a* m(?—) -b? 1:1(9)}
a a
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C=0 S \ (10)
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a [4]
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E= Pcosc (12)

2[—a’ +b* —a? 1n(~13~) —-p? 1n(é)}
a a

Fe a’b?Pcosa o (3)
2[a® -b* + a* ln(-l?—)%—b2 ln(é)} |
a a
G=0 a9
242 | -
H = (a” +b°)Pcosqx (15)

Ha® —b* + a? 1n(3) +b? 1n(57-)}
a a

If the coefficients found above are inserted into equations (5),.(6) and (7) and
rearranged, the stress components are found as follows;

; ; o
o,mi[hk?(é] —(1+k2)£}sin(8 +a) (16)
btm| b r r
, |
o =i{3i—k2(é) —(1+k2)é}sin(9+a) o (7
btm| b r r ' :
A L S Cg
T, = btm{bw%k [r) (1+k )Jcos(@ +Q) (18)

where m and k are given as follows;

k:%, m=1-k*+A+k?)Ink

3. DISTRIBUTION OF THE STRESSES

To show the distribution of the stress components for different:b/a ratios and values of
0, o, the beam thickness, the single load and (b-a) are taken as 1 mm, 100 N and 100
mm, respectively. The stress components are plotted for b/a ratios of 1.5, 2 and 3
(Figure 2 to 7).
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Figure 2. Distribution of the radial stress (0, ) according to (r-a) while 6 and o are
45°, 0° respectively
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Figure 3. Distribution of the radial stress (o,) according to (r-a) while 0 and o are
45°, 45° respectively
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Figure 4. Distribution of the tangential stress (og) according to (1- a) while 6 and o are 0°,
- 45° reSpectxveiy
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Figure 5. Distribution of the tangential stress (0g) according to (r-a) while 0 and « are 0°,
' 90° respectively
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" Figure 6. Distribution of the shear stress(tre) accordmg to (rwa) whlle 8 and o are 0°,
0° respectwely
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Flgure 7 Dlstnbutlon of the shear stress (T:p) according to (r-a) Whﬂe 8 and ¢ are
0° 45° respecnve}y
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4. CONCLUSION
In this study, a curved beam with an arbitrarily directed end force is analysed and
formulations of stress components, O, T, and Gy, are carried out. Because of the end
force, eight integration constants are needed to set up expressions. Using these
expressions, stress components(Gr, T, and G ) versus (r-a) graphs are plotted for b/a
ratios of 1.5, 2, 3 and for varying angles of 8 and o.. P and (b-a) are taken as 100 N and
100 mm respectively, in all these graphs.

By analyzing the results graphs (Figure 2 and 3) of radial stress (o), it can be concluded
that as the b/a ratio increases, the stress increases and the place of maximum stress
along the beam height (b-a) approaches to inner surface. Considering equation (16) it’s
obvious that effect of B+ and 180-(8+01) are identical. Two different combinations of 6
and ¢ (i.e, 9=45°,0=0° and 0=45°,0=45°) are sufficient to demonstrate all combinations
of 6 and o for radial and tangential stress for the value of 45° and 90°,

Analyzing the results graphs of o, (Figure 4 and 5), it can be concluded that as the b/a
ratio increases, the stress decreases on the contrary of ¢.. Considering equation (17), it is
obvious that the maximum stress occurs when the total of 6, o is 90°, For the same
reason as explained above two graphs of tangential stress distribution are plotted for the
pairs of 8=0°,0=45° and 6=0°,0:=90°,

It is surprising that when a horizontal cantilever beam subjected to a single axial force,
there is only uniformly distributed normal stress. However, the tangential stress at the
free end has a quadratical distributed form while the direction of the force is 90°(Fig.5).

It is seen that stress distribution graphs of shear stress and radial stress are similar to
each other,only the signs are different. Considering equations of (16), (18), it is seen
that the stresses are both equal for the same values of Sinus and Cosines. Also it can be
seen that the place of neutral axis changes according to the b/a ratio.

Overviewing all stress distribution graphs it is seen that value of tangential stress is
greater than the G, Ty, .
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