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Abstract- Roller bearing is one of the most widely used and critical elements in rotating 

machinery. In consequence, bearing fault diagnosis in machines, as well as to 

discriminate the different fault conditions have been a great interest. 

In this study, firstly, analytical model of a shaft-ball bearing system is developed. The 

shaft is assumed to be perfectly rigid and uniform, and supported by two radial ball 

bearings. Then, the effect of localized defects on bearing running surfaces (i.e. surfaces 

of inner and outer rings and balls) on the shaft vibrations are obtained using the 

simulation program. Then, vibration signatures are analyzed by one-way analysis of 

variance (ANOVA) method. Finally, post-hoc tests are applied to differentiate the ball 

bearing element's localized defects in shaft-ball bearing simulation model. 
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1. INTRODUCTION 

 

 Breakdowns in rotating elements cause time and economical losses due to 

malfunction of their components. The condition of the components should be monitored 

in order to not to encounter unexpected failures. Bearings are one of the most important 

and frequently used components in the rotating machinery. Ball bearings may contain 

manufacturing errors, mounting defects or damages which may also occur under 

working conditions. Most failures of rotating machinery have roots in the damage of 

rolling element bearings, such as fatigue crack, spalling on the races or rolling elements 

[1].  

 There is no clear criterion for the estimation of failure of a ball bearing. As long 

as the forces acting on a ball bearing are constant or changing slowly, the vibration level 

of shaft or ball bearing remains almost constant or changes slightly. But the vibrations 

will change when the defects and irregularities start to develop on the bearing elements. 

After detecting faulty element, it is possible to find out the type of the defect [2].  

Single point defects begin as localized defects which include cracks, pits and spalls on 

the rolling surfaces on the raceways or rolling elements, and, as the rolling elements 

pass over these defect areas, small collisions occur producing mechanical shockwaves. 

This process occurs every time a defect collides with another part of the bearing [3].  
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2. RELATED LITERATURE 

 

 Many researchers have used vibration signature analysis techniques for 

rolling element bearing fault identification in case of single defect on bearing 

components. Time-domain and frequency-domain vibration analysis techniques were 

tested, but effective identification of bearing condition is, however, not typically 

straightforward.  

 The early diagnosis methods in time domain are based on a number of 

parameters, such as peak, root mean square (RMS), crest factor, and so on. Time 

domain analysis has been widely employed. [4] Successful results of Root Mean Square 

(RMS) [5] [6], Kurtosis [7] [8] [9], peak value [10], Crest Factor (CF) [11], and 

synchronous averaging [12], [13] have been reported in the low frequency range of < 5 

kHz.  

 Many researchers, such as [7-9], have found the Kurtosis value to be more 

useful, when it is compared with the RMS, crest factor, and peak value. Peak and RMS 

can directly reflect the energy level of the vibration. The vibration data of a healthy 

bearing exhibits a normal distribution; thus, the kurtosis is equal to three. The 

propagation of damage in the bearing, which generates more peaks and increases the 

RMS, alters the Kurtosis level [14]. During the incipient failure condition of a bearing, 

the RMS value of the signal remains virtually unchanged, while an increase is noted in 

the peak value. As damage progresses, the RMS value increases, while the peak value 

does not necessarily increase. The ratio of peak value to RMS value of a signal is 

known as its crest factor and is an indicator of bearing condition [15].  

 Statistical moments recently played an important role in condition monitoring 

and diagnostics of rolling element bearings, and have attracted the attentions of many 

researchers. Statistical movements are descriptors of the shape of the amplitude 

distribution of vibration data collected from a bearing, and have some advantages over 

traditional time and frequency analysis [16]. Dyer and Stewart[17] first proposed the 

use of the fourth normalized central statistical moment kurtosis for bearing defect 

detection. White [9] studied the effectiveness of this method under a simulated 

condition. Several other studies [18-19], [5-6] have also shown the effectiveness of 

kurtosis in bearing defect detection. Because of the symmetry of the distribution, odd 

moments are zero for vibration signals of both healthy and damaged bearings.  

 Xinwen Niu et. al. [7] presented some new statistical moments for the early 

detection of bearing failure. They found the simulation and experimental tests show that 

the two new statistical parameters are preferred to the traditional third rectified moment 

and the fourth moment, respectively. Drona et. al. [8] have shown the interest of spectral 

subtraction for the improvement of the sensitivity of scalar indicators (crest factor, 

kurtosis) within the application of conditional maintenance by vibratory analysis on ball 

bearings. Furthermore they considered as the case of a bearing in good conditions of 

use, the distribution of amplitudes in the signal is of Gaussian kind.  

 The other new time domain method applied to bearing fault diagnosis is the 

Kolmogorov & Smirnov (K-S) test. It is a non-parametric and distribution free 

goodness-of-fit test. It is designed to test the null hypothesis in favor of the alternative 

hypothesis. Kar and Mohanty [20] employed the K-S test for quick analysis of time-

domain signals in diagnosing rolling element ball bearing faults. The bearings are 
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compared statistically with vibration signatures of good and faulty bearings using K-S 

test.  

 
Figure 1. Proposed elastical model for a ball bearing 

 

In this study, the vibration signatures received from roller bearing are analyzed by the 

Analysis of Variance technique. This method allows consideration of probability to 

derive statistical inferences about the groups of observations. It has been widely applied 

to scientific studies, and recent ones include in manufacturing material, medical, 

chemical, oceanographic and food [21-26].  

 

3. SIMULATION ANALYSIS  

 

 The shaft-bearing assembly is considered as a mass-spring system and the model 

also incorporates masses of the balls. Because the system shows a non-linear 

characteristic under dynamic conditions, the contacts of balls to the inner and outer 

races are represented by nonlinear contact springs as shown in Fig 1.  

In order to the equations of motion, it is necessary to calculate the deflection of i
th

 ball 

for the calculation of contact forces acting on the shaft and the ball [2]. Subsequently, 

the equations of motion in radial and axial direction were obtained for shaft and ball 

bearing elements, and they were solved simultaneously with a computer simulation 

program as [2]. A defect in the form of crack or debris was assumed to be located on the 

running surface (inner race, outer race, ball surface). It was assumed to have 3 m depth 

and 1 degree of width. The combination of these multi-localized defects then input to 

the simulation program and shaft vibrations were obtained.  

 The solution of the equations of motion for the shaft and balls are obtained using 

the Runge-Kutta iterative method, since they are non-linear and the direct substitution 

technique does not hold for them. For numerical solutions, the initial conditions and 

step sizes are very important for successive and economic computational solutions. The 

initial displacements of the shaft are assumed as x0 = 1,µm, y0 = 0.l µm and z0 = µm and 

the vibrations in radial direction are obtained for 5000 rpm shaft speed.  

 In this study, the shaft is assumed to be perfectly rigid and uniform which is 

supported by a pair of radial ball bearings. The shaft and ball bearing are arranged as in 

Karacay and Akturk [27]. This arrangement is illustrated in Figure 2. The specifications 

of the bearings and the shaft are shown in Figure 3.  
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 The bearings are force fitted to the spindle and in order to see the vibration 

characteristics of the bearing clearly, the axial preload was set to a value of 10 N, which 

is, a respectively small preload for the given bearing. An artificial viscous damping is 

introduced to the system in order to damp out the effect of transient vibrations. The 

value of this artificial damping is set to as low as 300 Ns/m in order to make sure that 

the magnitudes of vibrations will not be extremely affected. This value is also checked 

with the critical damping of the system and damping ratio ʓ is found to be 

approximately 0.008. Simulation results are obtained for unloaded spindle (i.e. 

Qx=Qy=Qz=0 N) 

 

 
Figure 2. Shaft-Ball bearing experimental arrangement (Karacay and Akturk[27]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Dimensions of the FAG 6201 type ball bearing and the shaft 

 

 

4. ANALYSIS OF VARIANCE  

 

 Fault diagnosis in FAG 6201 type roller bearing can be viewed as one factor 

problem where several treatments are tested for good or faulty. In this study, defect 

types of the roller bearing are taken as aggregate types and statistical tests are 

conducted.  

Specifications of the bearings and the shaft 

Inner race diameter (
id ): 18.3 mm 

Outer race diameter (
Od ): 25.8 mm 

Outer race outside dia. (
OD ): 32 mm 

Bearing width ( B ):  10 mm 

Ball diameter ( bd ): 5.4 mm 

Ball mass (
bm ): 0.003 kg 

Number of balls (m): 9 

Mass of the shaft (M): 6.1 kg 

Diameter of the shaft between the bearings (
iD ): 12 mm 

Length of the shaft: 640 mm 

do Do Di 

db 

di 
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 It has been shown that the analysis of variance and subsequent tests are very 

appropriate procedures in evaluating such populations. The statistical approach used in 

this study is summarized in Figure 4. The procedure is certainly not a new technique for 

statisticians, however, to the best of our knowledge there has been no study on the 

applicability to the fault diagnosis of roller bearings.  

 

Null hypothesis states that 

the group means from k 

treatments are equal

Compute the f-ratio

Conclude that the 

means from k 

treatments are equal

Test 

the Null hypothesis 

if f-ratio>fα

Select the appropriate 

post hoc test

Select Tukey’s test if the 

groups will be compared 

pairwise 

Select the Dunnet’s test 

if the mean of a control-

group will be compared

Compute test statistics Compute test statistics

Determine significance by 

comparing test statistics 

with critical statistics

Determine sigificance by 

comparing test statistics 

with critical statistics

Reject H0

Accept H0

 
Figure 4. The procedure of statistical analysis 

 

4.1. One- Way Analysis of Variance  

 

 In a k > 2 sample problem, where k is the number of samples, the model can be 

considered as follows:  

 
kH  ===: 210   

 differentismeantheofoneleastAtH a :   

Where the samples are from different observations taken from populations with means 

k ,...,, 21
. Furthermore, it will be  interesting to make individual comparisons among 

these k population means. By analysis of variance, part of the goal is to determine if the 

differences between k sample means are what one would expect due to random 
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variation alone or if indeed there is also contribution from systematic variation 

attributed to aggregate types.  

The procedure, with k  treatments and n  observations in each, can be described 

as follows: Let ijy  denote the j th( nj ,1,=  ) observation from the i th( ),1,= ki   

treatment, 
iy  is the mean of observations in the i th treatment and y  is the mean of all 

k  observations. 

 Usually, the computations in an analysis of variance problem are summarized in 

a tabular form as in Table 1:  

 

Table 1. Summary of ANOVA computations 

Source of   Degrees of   Sum of  Mean  Computed  

Variation   Freedom   Squares  Square  F  

 Control   k    SSA 
 

1
=2

1
k

SSA
s    

2

2

1

s

s
 

Error   1)( nk    SSE 

1)(
=2

nk

SSE
s  

  

Total   1nk    SST     

where  

2

1=1=

)(== yysquaresTotalsumofSST ij

n

j

k

i

  

2

1=

)(== yynsumofsquareTreatmentsSSA i

k

i

  

2

1=1=

)(== iij

n

j

k

i

yysquaresErrorsumofSSE   

When Ho is true, the ratio  

 
is a value of the random variable F having F -distribution with 1k  and 1)( nk  

degrees of freedom. When 
0H  is false, there is a one-tailed test with the critical region 

entirely in the right tail of the distribution. The null-hypothesis 
0H  is rejected at the  -

level of significance when 1)](1,[>  nkkff   

Another approach, the P -value, suggests that the evidence in favor of or against 
0H  is 

given by: fnkkFPP >1)](1,[[=   

 

4.2. Comparing a Control Group by Dunnet's Test  

 

 Dunnet's test compares the mean of the control mean with the mean of the other 

groups, pairwise [28]. The test groups are not compared with each other , thus only k-l 

comparisons are made. In diagnosing a roller bearing fault after the rejection of null-

hypothesis, applying this test is appropriate to determining if a bearing is good or not. 
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By selecting the good vibration data as the control group, other fault types can be 

compared and statistically significant differences can be detected.  

The Dunnet's confidence intervals for comparisons with confidence coefficient 

of at least 1  are calculated as: )
11

(1;;

icontrol

knnicontrol
nn

SSEdyy    

The values of knnd 1;;  are calculated by Dunnet[9] and [10] and can be found in 

statistical books. 

 

4.3. Multiple Comparison using Tukey's Test  

 

 The analysis of variance is a powerful procedure for testing the homogeneity of 

a set of means. However, if the null hypothesis is rejected and the stated alternative is 

accepted, it is still not known which of the population means are equal and which are 

different. One of the methods used for making paired comparisons is called Tukey's 

Test[31]. The method is based on the studentized range distribution, where it corrects 

for experiment wise error rate.  

The Tukey confidence limits for all pairwise comparisons with confidence 

coefficient of at least 1  are: 
n

q
yy ji

2
ˆ

2

;;



   

where ̂  is the standard deviation of the entire design and q  is the studentized range 

distribution(
j

i

s

range
q = ) with three factors:  

:Type I error rate or the probability of rejecting a true null hypothesis  

:The number of degrees of freedom in the thi  sample(The one from which 

range was calculated)  

:The number of degrees of freedom in the thj  sample(The one which standard 

deviation( s ) is calculated.  

The studentized range distribution can be found in [32], [33], [34]. Notice that the point 

estimator and the estimated variance are the same as those for a single pairwise 

comparison. The only difference between a single comparison is the multiple estimated 

standard deviation. Null hypothesis for Tukey's test states that all means being 

compared are from the same population, and hence the means should be normally 

distributed according to the central limit theorem.  

 

5. NUMERICAL EXPERIMENTS  

 

 In this section, one-way ANOVA test is applied to roller bearing fault diagnosis 

using shaft vibration signatures followed by Tukey's pairwise comparisons. Based on 

simulation results of a FAG 6201 type roller bearing, data from seven treatments are 

collected. These treatments are good, single ball defect, double ball defect, single inner 

race defect, double inner race defect, 5° outer race defect, 5° and 115° outer race 

defect.(Table 2)  
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Table 2. Summary Data 

Control Level N Mean St Dev. 

1 Good 4999 1,2405 0,2534 

2 Single Ball Defect 4999 0,5543 0,9907 

3 Double Ball Defect 4999 0,5706 1,0923 

4 Single Inner Race Defect 4999 0,7203 0,4345 

5 Double Inner Race Defect 4999 0,647 0,7207 

6 5± Outer Race Defect 4999 0,6692 0,6197 

7 

5± and 115 Outer Race 

Defect 4999 0,8186 0,103 

 

 In first step of the experimental procedure, the data is verified if the normality 

assumption is valid. Then, one-way ANOVA is carried if there exist statistically 

significant difference between groups. Based on the test result, pairwise comparisons 

are carried out to signify which of the groups are similar and which are different. The 

methods are fundamentals in a statistical analysis and the most related software can 

carry out this analysis. There is also specific software to carry out above analysis such 

as [35]. In this research, the data are analyzed in commercially available software 

Minitab version 13. As it is generally convention, it can be assumed that the Type I 

error of 5% which is a confidence level of 95%.  

 

5.1. Normality Assumption  

 

 The above described methods are parametric tests. One of the main assumptions 

for the tests to be applied is the distributions of the groups are normal. The histogram of 

vibration data from each group with normal curve is plotted in Figure 5. Goodness-of-fit 

analysis of the normal probability plots also indicates validity of the assumption (Figure 

6). Using least squares estimation, Pearson correlation coefficient which measure the 

strength of the linear relationship between the theoretical distribution and the collected 

data is very close to 1 with the lowest of .983.  

 

5.2. Fault Diagnosis by One-way ANOVA  

 

 In this section, the vibration data from all treatments are analyzed and analysis-

of variance technique is applied. The summary of all groups is displayed in Table 2. The 

box plots and dot plots of the data are shown in Figure 7. The null hypothesis of all 

means are equals is tested against the alternative hypothesis of at least one of the means 

is different. The resulting table is shown in Table 3. In this table, while F-value is 

582.40 the p-value is less than 0.000. P-value suggests that the probability of the groups 

come from the same population is very slim. Based on this result, the null hypothesis is 

rejected, and concludes that there is a statistically significant difference between groups. 
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Figure 5. Histogram and normal plot of the rolling bearing 
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Figure 6. Good-of-Fit analysis of normal distribution 

 

Table 3. ANOVA data 

 Source   DF  SS  MS  F  P  

 Control  6  1668,16  278,03  582,42  0,000 

Error   34986  16701,10  0,48     

Total   34992  18369,26      

 

5.3. Good vs. Faulty Diagnosis  

 In this analysis, the control group of good bearing is compared with other groups 

using Dunnet's comparison. The intervals are confidence intervals for means minus the 

control mean of good. In this test, investigation was made for a significant difference 

between means. Since, neither of the intervals includes "0", conclusion was that they 

were not good. Resulting table with the decision outcome is summarized in Table 4.  

 

Table 4. Comparison of other bearings against with good bearing 

Level  Lower  Center  Upper   Decision 

 Single Ball Defect   -0,7217  -0,6862  -0,6507 Reject 
0H , conclude faulty 

Double Ball Defect   -0,7054  -0,6699  -0,6345 Reject 
0H , conclude faulty 

Single Inner Race 

Defect  

 -0,5557  -0,5202  -0,4848 Reject 
0H , conclude faulty 

Double Inner Race 

Defect  

 -0,6290  -0,5935  -0,5581 Reject 
0H , conclude faulty 

5  Outer Race Defect   -0,6068  -0,5713  -0,5358 Reject 
0H , conclude faulty 

5  and 115  Outer 

Race Defect  

 -0,4574  -0,4219  -0,3865 Reject 
0H , conclude faulty 
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5.4.  Fault Classification by Tukey's Comparisons 

 

In ANOVA test, the null-hypothesis is rejected and concluded that least one of 

the means is different. It is still not known which populations are same which are 

different. In this section, Tukey's pairwise comparisons to the vibration data are applied. 

The resulting table is shown in Table 7. In this table, the lower and upper limits of 

confidence interval is displayed where they are calculated as column level mean minus 

row level mean. As in Dunnet's test, the observations suggest that the good bearing is 

significantly different from all other groups. The values in column 2 and 3 suggest that 

the ball defects are different from all other treatments. However, they are similar to 

themselves as single ball defect is not significantly different from the double ball defect. 

ANOVA analysis fails only in capturing the difference in double inner race defect and 
5  outer race defect. 

 

Table 5. Tukey's test results 

   1   2   3   4   5   6  

 2   0,6455      

  0,7270      

 3   0,6292   -0,0570     

  0,7107   0,0245     

 4   0,4795   -0,2067   -0,1904    

  0,5610   -0,1252   -0,1089    

 5   0,5528   -0,1334   -0,1171   0,0326   

  0,6343   -0,0519   -0,0356   0,1141   

 6   0,5306   -0,1556   -0,1394   0,0103   -0,0630  

  0,6121   -0,0742   -0,0579   0,0918   0,0185  

 7   0,3812   -0,3050   -0,2888   -0,1391   -0,2124   -0,1901 

  0,4627   -0,2235   -0,2073   -0,0576   -0,1309   -0,1086 

 

6. CONCLUSION  

 

 In this study, a shaft which is assumed to be perfectly rigid and uniformly 

supported by a pair of radial ball bearings is considered. An analytical model of the 

system is developed and the effects of localized defects on bearing running surfaces (i.e. 

surfaces of inner and outer rings and balls) on ball bearing vibrations are obtained by 

using the simulation program.  

 Secondly, the vibration signatures caused by roller bearing faults have been 

analyzed. Initially, the analysis of variance is applied if there is a statistically significant 

difference between data groups. After determining the dissimilarity, it is proceeded with 

the post-hoc tests. Firstly, Dunnet's test is applied if the fault treatments are different 

from the control group of good bearing. Then, Tukey's pairwise comparison has been 

applied to identify which populations are different. The validity of the assumptions of 

the experimental approach has also been discussed. It has been shown that, ANOVA 

analysis and post-hoc tests can be conducted on the roller bearing vibration data. The 

methodology successfully distinguishes the good bearing from the faulty ones. Also, 
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using an effective method for making paired comparisons, faulty bearings are  separated 

according to their types.  
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