
Vol. 109 (2006) ACTA PHYSICA POLONICA A No. 6

Some Elastic Properties and Phase

Transitions in Some Alkali Halides Using

Interatomic Potential Model

H.R. Yazar

Department of Physics, Kırıkkale University
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We have predicted the phase transition pressure in some alkali halides

using an interatomic potential approach based on rigid ion model. This

potential form represents the composite form of the inverse power depen-

dence and exponential dependence of the repulsive energy on interionic dis-

tance. Some thermoelastic properties such as second order elastic constants

have been calculated using the same potential. The phase transition pres-

sures (28.69 and 2.4 GPa) obtained by us for two alkali halides (NaCl and

KCl) are in closer agreement with their corresponding experimental data

(29.0 and 2.0 GPa). This approach is promising with respect to prediction

of the phase transition pressure of other alkali halides as well.

PACS numbers: 78.55.Fv, 05.70.–a, 61.50.Ks, 64.10.+h

1. Introduction

The quantum mechanical calculation of the repulsive energy of a pair of
multielectron atoms or ions is an extremely difficult and complicated task even
for simple condensed systems of closed shell ions such as NaCl-like alkali halides.
Semiemprical and phenomenological potential forms have therefore been developed
which represent the exponential dependence on interionic distance such as the
Born–Mayer exponential form, and the inverse power dependence as the Born–
Lande inverse power form. Studies on the alkali halides provide a critical test of
different interionic potentials.

The alkali halides are the simplest and ideal ionic solids on which much ex-
perimental and theoretical work has been done in the past [1]. They are model
crystals for performing tests to validate new theories. They generally crystallize
in either the NaCl(B1) or the CsCl(B2) structure. Their elastic, dynamic, and
thermodynamic properties have been extensively investigated by various experi-
mental and theoretical workers [2, 3]. These solids undergo structural phase tran-
sition (B1→B2) at elevated pressures [4]. A survey of the literature reveals that,
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although a large amount of experimental work has been done on the phase tran-
sition in alkali halides [5], very scant attention has been paid to their theoretical
understanding.

The effects of such a non-rigidity of ions via three-body interaction have been
incorporated in the successful study of the phase transition and high-pressure
elastic behavior of II–VI and III–V compound semiconductors [6] and divalent
metal oxides [7]. Motivated by these facts, we thought it pertinent to apply the
interatomic potential for the prediction of the phase transition pressures in NaCl
and KCl. In the present paper we proposed an interatomic potential and we
investigate the applicability of an interatomic potential by calculating second order
elastic constants (SOEC) and some physical quantities such as the phase transition
pressures of two alkali halides (NaCl and KCl).

In this paper, the three-body interaction has been considered to arise from
the effects of non-rigidity of ions caused by the deformation of the electron shells
of the overlapping ions. We have adopted the graphical method for predicting
the phase transition pressure by plotting the Gibbs free energy as a function of
pressure.

2. Theory and method of calculation

The lattice energy for an ionic crystal in terms of an effective pair potential
is written as follows [8]:

ϕ(rijrik) = −
∑

j 6=k

∑

i

αMe2

rij + rik
+

Vij

(rij + rik)n

− C

(rij + rik)6
− D

(rij + rik)8
, (1)

where Vij = βijb exp(−(rij +rik)m/ρij) is the short-range potential. The repulsive
parameters b and ρ which are the values of adjustable model parameters for the
different salts are given in Table I. rij is the interatomic distance between atoms
i- and j-th and r0 is the separation of the atoms for minimum potential. The
three-body general potential coupling the atom i-th with its neighbor’s j- and
k-th has been defined in terms of the two-body model potential. The first term
on the right hand side of Eq. (1) is the long-range electrostatic Madelung energy
term αM, the second term represents the short-range overlap repulsive interaction
Vij , and the last two terms represent the Van Der Waals dipole–dipole (CNaCl =
180 × 10−60 erg/mole and CKCl = 452 × 10−60 erg/mole) and dipole–quadrupole
(DNaCl = 180 × 10−76 erg/mole and DKCl = 560 × 10−76 erg/mole) interactions,
respectively [3]. Following Michielsen et al. [9], we take n = 4 and m = 1 so that
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The equilibrium condition is [1]

(b/r0)
[
βij exp ((ri + rj − r0)/ρij) + 2βij exp

(
(2ri −

√
2r0)/ρij

)

+2βij exp
(
(2rj −

√
2r0)/ρij

)]
= (2αM/3)z2e2/2v, (3)

where βij (i, j = 1, 2) are the Pauling coefficients, b and ρ are the range parameters,
v is the unit cell volume. For simplicity we have taken single ρ instead of the ρij .

This potential has only two parameters b and ρ and can be determined
from the equilibrium condition using the value of the lattice constants [10].
The calculated values of these parameters (b, ρ) and input parameters, such as
r0, r+, r−, B0 which were taken from literature [10], are listed in Table I and
used to compute the phase transition pressure and volume collapses in NaCl and
KCl at 0 K.

TABLE I

Input data and model parameters of NaCl and KCI.

r0 r+ r− B0 f0 Model parameters

b [10−12 erg] ρ [Å]

NaCl 2.82 1.54 1.99 240 8.78 0.341 0.353

KCl 3.14 1.51 1.63 173 32.547 0.313 0.315

The r0, r+, r− are in Å units and B0 (bulk modulus) is

in 108 Pa [10].

Thermodynamically, a phase transition is said to occur when the changes
in structural parameters of the phase are caused by the variation of free energy.
The compound transform from its initial B1(NaCl) to B2(CsCl) structure under
pressure. The difference between free energy of the two phases becomes zero at
the phase transition pressure. The stability of a particular structure is determined
by the minimum of the Gibbs energy which is

G = U + PV − TS, (4)
where U is the internal energy, which at 0 K corresponds to cohesive energy, S is
the vibrational entropy at absolute T , pressure P , and volume V .

The Gibbs free energies GB1(r) = UB1(r) + 2Pr3 for the NaCl(B1) phase
and GB2(r′) = UB2(r′) + 8

√
3/(3Pr′3) for the CsCl(B2) phase become equal at

the phase transition pressure P and temperature 0 K, i.e. ∆G = (GB1 − GB2)
becomes zero. UB1 and UB2 phases are given by [1]

UB1(r) = −1.7475e2Z(Z + 6f(r))/r + 6Vij(r) + 6Vii(r) + 6Vjj(r)

and

UB2(r′) = −1.7627e2Z(Z + 8f(r′))/r′ + 8Vij(r′) + 8Vii(r′) + 8Vjj(r′). (5)
Respectively, here r and r′ are nearest neighbor (nn) separations corresponding
to NaCl and CsCl phases, respectively. f(r) and f(r′) are the two-body force
parameters for NaCl and CsCl, respectively, expressed as [11]
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f(r) = f0 exp(−r/ρij), f(r′) = f0 exp(−r′/ρij). (6)
Here, the input values of f0 are taken to be the same for both structures (NaCl
and CsCl) [12].

For predicting transition pressure, we have minimized the Gibbs free energies
with respect to interatomic separations and calculated ∆G = (GB1 − GB2) for
various pressures. The pressure, at which ∆G approaches zero, corresponds to the
phase transition.

2.1. Elastic constants

The derivative of the potential energy ϕ for central forces is most conve-
niently expressed in spherical coordinates. The transformation from rectangular
to spherical coordinates is given by [13](

∂ϕ

∂α

)

r

= αP , (7)

(
∂2ϕ

∂α∂β

)

r

= δαβP + αβQ, (8)

where P and Q are the derivative operators as follows,
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(

1
r
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)
, (9)
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[
1
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(
1
r
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β ≡ 1
V

(
∂V
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)
P

and α ≡ 1
P

(
∂P
∂T

)
V

are mechanical coefficients of related materials,

δαβ =

{
1 for α = β,

0 for α 6= β.

The equations for the elastic constants are then defined by Anderson [14], where
∆ is the volume-per cell (ion pair):

C11 = (Cxx xx) =
1
∆

∑

l

[
Q(xl)4 + P (xl)2

]
, (11)

C12 = (Cxx yy) =
1
∆

∑

l

[
Q(xl)2(yl)2 − P (xl)2

]
, (12)

C44 = (C∗xy xy) =
1
∆

∑

l

[
Q(xl)2(yl)2 + P (xl)2

]
. (13)

SOEC have been obtained from transportation of Cartesian coordinates to spheri-
cal coordinates system and given in Table II. Since forces are additive the derivative
of the potential in the equations of motion are additive, and the elastic constants
can be broken down into a sum

(Cαβ γλ) = (Cαβ γλ)e + (Cαβ γλ)R. (14)
The reason, that these constants are broken down into two parts, is that the
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sum motion is taken to infinity for the e component (standing for electrostatic or
Coulombic), while the summation is taken only over nearest neighbors for R com-
ponent (standing for repulsive). This separation corresponds to the separate parts
of the lattice potential arising between the k and k′ positions which is appropriate
to define the energy per unit cell

ϕkk′ = −ArZkZ2
k′

rkk′
+ MkϕR(r), (15)

where Mk is the coordination number around the k position, for the case of NaCl,
Mk = 6; Ar is Madelung constant of the lattice, Zk and Zk′ are the valence number
and e is the electronic charge and ϕR(r) is the repulsive potential.

TABLE II

Second order elastic constants for NaCl-structure

(for details see the text).

∆CR
11 2QRr4 + 2P Rr2

∆CR
12 −2P Rr2

∆CR
44 2P Rr2

Denoting the potential above by the symbols R and e corresponding to the
two terms in Eq. (15), we write

ϕ = ϕe + ϕR. (16)
Also denote the operators P and Q by the same symbols so that

P R =
1
r

(
∂ϕR

∂r

)

r

, QR =
[
1
r

∂

∂r

(
1
r

∂ϕR

∂r

)]

r

, (17)

as also the elastic constants (for example C11)

C11 = Ce
11 + CR

11. (18)
Repulsive parts of the elastic constant (for example CR

11) can be expressed in terms
of P R and QR operators and are given in Table II. It is clearly seen from Eq. (17)
that P R and QR can be written as a first and second derivative of the potential
and these forms are given in Table III. Madelung constants can be defined in
two ways; a constant Ar corresponding to the nearest-neighbor distance r, or

TABLE III

The elastic constant parameters in terms of the

derivatives of the repulsive potential [ϕR(r)].

∆CR
11 2r2d2ϕR(r)/dr2

∆CR
12 −2r(dϕR(r)/dr)

∆CR
44 2r(dϕR(r)/dr)
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Aa corresponding to half distance a of the unit cell. For comparison purposes,
Ar = Aa and similarly, r = a for NaCl.

2.2. The short-range component of the potential

We now express the operators P and Q in terms of the derivatives of the
repulsive potential with respect to r. It is readily seen that

QR =
1
r2

d2ϕR

dr2
− 1

r3

dϕR

dr
, (19)

P R =
1
r

dϕR

dr
. (20)

In a tabular form, the results are given in Table III.
There are two ways to proceed from this point. One way is to represent

the operators d2ϕR/dr2 and dϕR/dr at the equilibrium condition r = r0 as pure
numbers and then evaluate the numbers from experiments on the elastic constants.
The second way is to assume some function through the operators. We will proceed
with elastic constants as a function of r.

Let us take the repulsive part of the potential as

ϕR(r) =
b

r4
exp

(
− r

ρ

)
. (21)

Using Eq. (21) to the elastic parameters listed in Table III, we have evaluated the
repulsive term in the elastic constants, which are given in Table IV.

The derivative of Eq. (15) is vanishing at equilibrium, r = r0. Thus
4B exp(− r

ρ )

r5
+

B exp(− r
ρ )

ρr4
=

ArZ
2e2

Mr2
(22)

and

P R = −
B exp(− r

ρ )

ρr5
−

4B exp(− r
ρ )

r6
, (23)

QR =
24B exp(− r

ρ )

ρr8
+

9B exp(− r
ρ )

ρr7
+

B exp(− r
ρ )

ρ2r6
. (24)

The elastic constants expressions can be obtained by combining the results shown
in Table V with those in Table IV. The full expressions for the elastic constants
for NaCl-structure are:

C11 =
1

2M

ArZ
2e2ρ

(4ρ + r)

(
40ρ2 + 7ρr + r2

ρ2r4

)
− 2.55604

Z2e2

∆0a0
, (25)

C12 =
ArZ

2e2

r3M(4ρ + r)
+

4ArZ
2e2ρ

r4M(4ρ + r)
+ 0.11298

Z2e2

∆0a0
, (26)

C44 = − ArZ
2e2

r3M(4ρ + r)
− 4ArZ

2e2ρ

r4M(4ρ + r)
+ 1.27802

Z2e2

∆0a0
, (27)

The calculated values of SOEC and experimental values [12] of alkali halides are
given in Table VI.
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TABLE IV

The elastic constant parameters for NaCl-structure (see the text).

CR
11

1

2M

ArZ
2e2ρ

(4ρ + r)

(
40ρ2 + 7ρr + r2

ρ2r4

)

CR
12

ArZ
2e2

r3M(4ρ + r)
+

4ArZ
2e2ρ

r4M(4ρ + r)

CR
44 − ArZ

2e2

r3M(4ρ + r)
− 4ArZ

2e2ρ

r4M(4ρ + r)

TABLE V

Values of lattice sum for Coulomb potential. The units

of Cij are Z2e2/∆a, where ∆ is the volume of the cell.

Aa 1.74756

Ar 1.74756

Ce
11 −2.55604

Ce
12 0.11298

Ce
44 1.27802

TABLE VI

Calculated values of SOEC and experimental values.

C11 × 1011 C11 × 1011 C12 × 1011 C12 × 1011 C44 × 1011 C44 × 1011

[dyn/cm2] [dyn/cm2] [dyn/cm2] [dyn/cm2] [dyn/cm2] [dyn/cm2]

Present Exp. [12] Present Exp. [12] Present Exp. [12]

NaCl 4.74 4.79 1.29 1.15 1.27 1.27

KCl 3.75 3.98 0.79 0.61 0.81 0.63

3. Results and discussion

In this work, the applicability of the interatomic potential is considered for
studying the crystalline properties of alkali halides. This potential form repre-
sents the composite form of the inverse power dependence and the exponential
dependence of the repulsive energy. Second order elastic constants are calculated
using the same potential and compared with the experimental data and some other
theoretical works.

Figure 1a,b and Fig. 2a,b show that ∆G tends to 0 at the phase transition
pressure 28.69 Gpa for NaCl and 2.4 Gpa for KCl crystals, respectively. These
values of the phase transition pressures are in much better agreement with the
available experimental results [2, 5, 15].

We have also calculated the percentage of relative volume changes using the
compression curve and presented in Fig. 1a,b and Fig. 2a,b. The values of these
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volume collapses ∆V (P )/V (0) have been obtained at the phase transition pres-
sures and listed in Table VII along with their available experimental data [2, 16].

Fig. 1. NaCl: variation in relative volume V (P )/V (0) with pressure P (a) and in Gibbs

free energy difference ∆G with pressure P (b).

Fig. 2. KCl: variation in relative volume V (P )/V (0) with pressure P (a) and in Gibbs

free energy difference ∆G with pressure P (b).

TABLE VII

Phase transition pressures and volume collapses of alkali halides.

Phase transition Volume collapses

pressure [GPa] ∆V (P )/V (0)(%)

Crystal Present Experiment Others Present Experiment

NaCl 28.6 29.0a 27.0b –4.5 −5.8e

27.4c

23.9d

KCl 2.4 2.0f 1.1b –14.3 −12.3f

1.9g

aRef. [15], bRef. [17], cRef. [18], dRef. [19], eRef. [18], fRef. [2],
gRef. [5].
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The results which are presented in Table VII reveal that the phase transition
pressure and the associated volume collapses are, generally, in good agreement with
the available experimental results better than those obtained by other theoretical
workers.

On the basis of overall achievements, it may be concluded that the effective
pair potential model approach adopted by us is capable of providing a better
understanding of the high-pressure phase transition behavior of alkali halides.
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