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Abstract

Minimizing of total tardiness is one of the most studied topics on single machine problems. Researchers develop a num-
ber of optimizing and heuristic methods to solve this NP-hard problem. In this paper, the problem of minimizing total
tardiness is examined in a learning effect situation. The concept of learning effects describes the reduction of processing
times arising from process repetition. A 0–1 integer programming model is developed to solve the problem. Also, a random
search, the tabu search and the simulated annealing-based methods are proposed for the problem and the solutions of the
large size problems with up to 1000 jobs are found by these methods. To the best of our knowledge, no works exists on the
total tardiness problem with a learning effect tackled in this paper.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In traditional scheduling problems, most research assumes that all jobs have constant processing times; in
particular, job processing times are independent of their position in the scheduling sequence. However, this
assumption is impractical in many situations. Recent empirical studies in several industries have verified that
unit costs decline as firms produce more of a product and gain knowledge or experience [1–4]. This phenom-
enon is known as the ‘‘learning effect’’ in the literature [5]. The learning effect has been widely employed in
management science since its discovery by Wright [6] over half a century ago. However, there have been very
few studies in the general context of production scheduling. These studies were about on single [5,7–14] and
multi-machines [15–19].

The production of a family of similar components or operations using similar equipment and tooling is
tenet of group technology [20]. In a group production and/or cellular manufacturing system, a group or a
cell will process only a limited number of different, but similar jobs in a finite production cycle repeatedly.
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Therefore the machine operators will repetitively perform a set of similar operations. Because of this, opera-
tors will gain experience, move upwards on the learning curve and produce parts faster with a higher quality
level over time [21]. As a result group technology and cellular manufacturing are highly prevalent in small
batch and job production systems. The practical importance of taking learning effects into consideration in
scheduling similar jobs for production is quite evident.

In this paper, we consider the total tardiness problem with a learning effect in a single machine. Single
machine scheduling does not necessarily involve one machine. It can also involve a group of machines or a
system that can be treated as one machine.

Minimizing the total tardiness is one of the most important criteria in single machine scheduling and it is a
NP-hard problem [22]. Many implicit enumeration techniques such as branch-and-bound [23–28], dynamic
programming [29–37], dominance rules [38,39] and decomposition [28,30,33,35,40–42] have been proposed
for the static total tardiness problem. Table 1 provides a brief summary of the important advancements in
research towards solving the static total tardiness problem to optimality. However, high computational
requirements of branch and bound procedures and high memory requirements of dynamic programming tech-
niques make them inapplicable for large scale problems. For heuristics, see the literature review by Russell and
Holsenback [43]. On the other hand, the dynamic version of the total tardiness problem has usually been
attacked by referring to priority rules, see, for example, Baker and Bertrand [44] and Raghu and Rajendran
[45]. Biskup and Simons [46] have considered a dynamic total tardiness problem arising out of a decentralized
job acquisition by several agents and presented two cost allocation schemes.

Since the total tardiness problem without learning effect in a single machine is a NP-hard problem; the
problem tackled here is also a NP-hard problem. To the best of our knowledge, no works exists on the total
tardiness with a learning effect.

The rest of the study is organized as follows. In Section 2, the problem and the proposed 0–1 integer pro-
gramming model are described. The heuristics that are used to solve large size problems are presented in Sec-
tion 3. The experimental results are given in Section 4. Finally, Section 5 provides conclusions and evaluations
of the study and suggests some directions for future researches.
Table 1
Optimizing techniques for the total tardiness problems [47]

Year Method Complexity Reference

1961 BBa Schild and Fredman [23]
1962 DPb Held and Karp [29]
1964 DP O(n2n) Lawler [30]
1968 Network model Elmaghraby [48]
1969 Dominance rules Emmons [38]
1971 DP-based hybrid Srinivasan [31]
1972 BB 30 jobs, 64.13 s Shwimer [24]
1975 BB 20 jobs, >300 s Rinooy Kan et al. [25]
1976 BB/ Lagragian relaxtion Fisher [26]
1977 Decompozition/DP Oðn4

P
piÞ Lawler [32]

1978 Decompozition/DP 50 jobs Baker and Schrage [33]
BB 20 jobs, 612.8 s Picard and Queyranne [27]
DP 50 jobs, 0.844 s Schrage and Baker [34]

1982 Decompozition/DP O(n7/e) Lawler [35]
Lawler decompositions extension Potts and Van Wassenhove [40]

1983 MINIT Sen et al. [49]
1987 DP 6100 jobs Potts and Van Wassenhove [36]
1991 DP Sen and Borah [37]
1995 Decomposition extension Chang et al. [41]
1996 Extension of Emmons’ dominance Yu [39]

Decomposition/BB 100–150 jobs Szwarc and Mukhopadhyay [28]
1997 Decomposition Tansel and Sabuncuoglu [42]

a BB: Branch-and-bound.
b DP: Dynamic programming.
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2. Problem description

In considered problem we assume that a set N = {1, 2, . . . ,n} of n simultaneously available jobs is to be pro-
cessed on a single machine. pj denotes the processing time of job j, dj denotes the due date of the job j. A job
once started on the machine must be completed on it without interruption (i.e., no preemption is allowed). The
machine may not process more than one operation at a time. When the completion time of any job j is greater
than its due date, the tardiness occurs for this job j. That is

P
T ¼

Pn
j¼1 maxfCj � dj; 0g. Cj is the completion

time, Tj is the tardiness of the job respectively. That is if pjr is the actual processing times of job j scheduled in
position r in a sequence, then pjr = pjr

a (where a 6 0 is the learning index, given is the logarithm to the base 2
of the learning rate) the objective is to find a schedule that minimizes the total tardiness on single machine (the
problem is denoted as 1=LE=

P
T , where LE is learning effect).
3. A 0–1 integer programming model

In this proposed model, there are n2 + 5n variables and 6n constraints, where n denotes the number of jobs.
The parameters and variables in the model are described below and then the proposed model is given.

Parameters:

j the number of jobs, j = 1,2, . . . , n

pj the processing time of job j, j = 1,2, . . . ,n
dj the due date of job j, j = 1,2, . . . ,n

a learning index
Decision variables:

Zjr If job j is scheduled at the rth position to be processed, Zjr = 1 otherwise Zjr = 0, j = 1,2, . . . ,n,
r = 1,2, . . . ,n

Tr the tardiness for the rth position job r = 1,2, . . . ,n
Auxiliary variables:

pr the learning effect processing time of the rth ranked job
pr ¼
Xn

j¼1

raZjrpj; r ¼ 1; 2; . . . ; n: ð1Þ
Cr the completion time of the rth ranked job r = 1,2, . . . ,n

d�r the due date of the rth ranked job
d�r ¼
Xn

j¼1
Zjrdj; r ¼ 1; 2; . . . ; n: ð2Þ
0–1 integer programming model:
Objective function :

Min ¼
Xn

r¼1

T r

Constraints :

Xn

j¼1

Zjr ¼ 1; r ¼ 1; 2; . . . ; n; ð3Þ

Xn

r¼1

Zjr ¼ 1; r ¼ 1; 2; . . . ; n; ð4Þ
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C1 P A1;

Cr P Cr � 1þ pr; r ¼ 1; 2; . . . ; n; ð5Þ
T r P Cr � d�r ; r ¼ 1; 2; . . . ; n: ð6Þ
Zjr: 0–1 and all variables are positive and integer.
Constraint (3) specifies that only one job be scheduled at the rth job priority. Constraint (4) defines that

each job be scheduled only once. Constraint (5) represents that the beginning processing time of the rth ranked
job be greater than or equal to the previous jobs completion time at the machine. Constraint (6) stipulates that
the tardiness of the rth ranked job be greater than or equal to difference between (Cr) and ðd�r Þ.
4. Heuristic methods

Most of the scheduling problems are NP-hard problems. Because of this, only small size problems can be
solved optimally by the branch-and-bound, the dynamic programming and the integer programming models.
But, for the real applications in industry to deal with large size problems can be necessary. The researchers
have studied to develop heuristic methods for solving these type problems.

The considered single machine scheduling with learning effect problem can be solved optimally for small
size problems with up to 25 jobs by the proposed integer programming model. That is why we applied meta
heuristic methods to solve large size problems. These heuristics are three tabu search based methods, three
simulated annealing based methods and a random search method. These methods are explained in the follow-
ing sections.
4.1. Tabu search heuristic

Tabu search has been used widely in combinatorial optimization. The basic idea is to slightly alter a known
(current) solution in a certain manner (called neighborhood structure) and take the best alteration as the new
current solution. Such altered solutions are called neighbors of the current solution. An operation that yields a
neighbor is called a move. To avoid being trapped at a local optima, the best neighbor that is worse than the
current solution is allowed to become the new current solution. To avoid cycling, certain moves are marked as
tabu. A tabu move may be allowed if an aspiration criterion is satisfied. This procedure continues until a cri-
terion is met [50].

In this study, an experimental design was made for determining suitable tabu search parameters. To the
results, the chosen tabu search parameters are given in Table 2. Additionally, according to the used initial
solutions, the tabu search methods were considered into three groups (TS-I, TS-II, TS-III). These are the ran-
dom, EDD, E&G solutions. The methodology of E&G heuristic is shortly given below.
E&G heuristic

The methodology of E–G heuristic is similar to NEH [51] procedure. Jobs are ordered in descending order
of their due dates. The best partial sequence of first two jobs is found about minimizing total tardiness with
learning effect processing times and the third job is inserted into the best two-job partial sequence and the best
three-job partial sequence is chosen. In this way the complete sequence is constructed.
2
eters of the tabu search

eters TS-I TS-II TS-III

solutions Random EDD E&G
ist length 2

ffiffiffi
n
p

2
ffiffiffi
n
p

2
ffiffiffi
n
p

orhood search strategy: API API API
ng criterion n Iteration no improvement n Iteration no improvement n Iteration no improvement
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4.2. Simulated annealing

Simulated annealing (SA) is a local search algorithm (meta-heuristic) capable of escaping from local
optima. Its ease of implementation, convergence properties and its use of hill-climbing moves to escape local
optima have made it a popular technique over the past two decades [52].

SA is a neighborhood search technique that has produced good results for combinatorial problems. A stan-
dard SA procedure begins by generating an initial solution at random. At each stage, the new solution taken
from the neighborhood of the current solution is accepted as the new current solution if it has a lower or equal
cost (in the our study objective function value); if it has a higher cost it is accepted with a probability that
decreases as the difference in the costs increases, and as the temperature of the method decreases. This tem-
perature, which is simply a positive number, is periodically reduced by some temperature scheme, so that it
moves gradually from a relatively high value to near zero as the method progresses. Thus at the start of
SA, most worsening moves are accepted, but at the end only improving ones are likely to be accepted. The
method converges to a local optimum as the temperature approaches zero, but because SA has performed
many perturbations at a high temperature which have pushed the search path into new areas, a better local
optimum solution should hopefully be reached [53]. A standard SA algorithm can be stated in Fig. 1 [54].

Some parameters and rules must be set to solve any problem with the SA algorithm. These are: (1) the ini-
tial value of the temperature parameter, (2) the number of iterations to be performed at each temperature, (3)
a cooling function, (4) a stopping criterion to terminate the algorithm. According to experimental design
results, the chosen simulated annealing parameters in the problem are given in Table 3. Additionally, accord-
ing to the used initial solutions, the simulated annealing methods were considered into three groups (SA-I,
SA-II, SA-III). These were the random, EDD, E&G solutions.
Step 1. 
Given an initial solution Si ∈ ;
Given simulation temperature values 00 >> FTT ;

Setting an iterative counter 0=k .
Step 2. 

Generating an initial solution iNj ∈ ;

Evaluating )()( ifjff −=Δ .
Step 3. 

),.e.i,deifsitassi’noiretircsiloporteM‘fI 1,0[)}/exp(,1min{ ∈>Δ− ηkTf ,

then ji = .
Step 4. 

If ‘Metropolis equilibrium’ under kT is realized, then go to Step 5; Else go to 

Step 2. 
Step 5. 

If ‘stop criterion’ is not satisfied, i.e., fk TT > , then reducing the temperature 

0,1 >Δ−=+ kkkk TTTT , and 1+= kk , go to Step 2; Else output iiopt = .

End.

Fig. 1. A standard SA algorithm.

Table 3
Parameters of the simulated annealing

Parameters TS-I TS-II TS-III

Initial solutions Random EDD E&G
Neighborhood search strategy: API API API
Initial temperature 500 500 500
Final temperature 1 1 1
Cooling rate 0.995 0.995 0.995
Maximum iteration length at a particular temperature 1 1 1
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4.3. Random search

Random search is a method that selects a specific number of solution point (a sample size) randomly from
the solution space. Random search evaluates the selected points (sequences) about their objective function val-
ues and identifies the best sequence in the sample. The best sequence is stored at the memory and then this
process is repeated. When the new best sequence is better than the previous one, the previous sequence is
updated with the new sequence otherwise it does not change. The search is stopped at a prespecified number
of iterations. There are two parameters in random search method: The first is the specification of the sample
size and the other is the stopping rule. Stopping can be realized either at a certain number of iterations or when
there is no improvement a given number of consecutive iterations [55,56].

In the experimental study we have considered (n � 1) as the sample size, and no improvement for n repe-
titions as the stopping rule for the random search of the problem.

5. Experimental results

In this study, all experimental tests were conducted on a personal computer with Pentium IV/2 512 Ram.
The integer programming model is used to find the optimal solutions of the considered problem using Hyper
LINDO/PC 6.01 software package [57]. The heuristic methods used in this paper were coded on C++ Builder 5.
The exact solutions for four different job sizes as n = 10, 15, 20 and 25 were found. Ten repetitions were made
for each problem size.

Heizer and Render, [4] indicate that different products have different learning curves, and that the rate of
learning varies depending upon the potential of the process and product. They provide that the learning rates
vary between 70% and 90% for different manufacturing industries in the US between 1920 and 1988. For
examples; 79%, and 80% were in the steel industry and aircraft assembly, respectively. So, in this study we
assumed 80% as a learning rate.

In this study, experimental analyses are realized at two stages:

1. Finding exact results for small size problems, and solving the small size problems with heuristic methods,
and comparing the solutions with the exact results.

2. Solving the large size problems with the heuristic methods.

5.1. Best results and errors of heuristic methods

The experimental design was similar to Hsu and Lin [58] and processing times on the single machine was
generated from a uniform distribution in the ranges [1,100]. The due dates were randomly generated from
another uniform distribution on the integers between [0 � Cmax/2], [0 � Cmax], [Cmax/2 � Cmax] and
[0 � 3Cmax/2]. Here, Cmax was obtained by an SPT sequence with taking into account the learning effect pro-
cessing times (that is; Cmax ¼

Pn
r¼1p½r�r

a rank : minn
r¼1p½r�). The experimental set is given in Table 4. As seen

from Table 4, totally 160 small size problems were solved.
Table 4
The parameters for small size problem (n 6 25)

Parameter Alternatives Values

Processing time (pj) 1 �U[1,100]
Number of jobs (n) 4 10,15,20,25
Due date range (DDR) 4 �U[0 � Cmax/2]

�U[0 � Cmax]
�U[Cmax/2 � Cmax]
�U[0 � 3Cmax/2]

Number of solution problem 10

Total problem 1 · 4 · 4 · 10 = 160
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The average CPU times of the integer programming model (in terms of seconds) in relation to the number
of jobs are shown in Fig. 2. Four different due date range were used for the problems. As seen in Fig. 2, the
longest CPU times belong to the problems with U[0 � 3Cmax/2]-due date range. On the other hand, the short-
est CPU times belong to problems with U[0 � Cmax]-due date range.

The optimal solutions of the considered problem were found up to 25 job size. To solve large size problems
in a short time and to find the optimal or near optimal solutions, heuristics should be used. For this reason,
seven heuristic methods that are three tabu search methods, three simulated annealing methods and a random
search method were used. Heuristic error is calculated as follows:
er
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(b)

Fig. 3
[0 � 3C
Error ¼ Heuristic solution �Optimal solution

Optimal solution
:

The results of the heuristic methods were compared with the results of the optimal solutions obtained by the
integer model, and the errors of these heuristics are given in Fig. 3. As seen in Fig. 3, firstly the TS-III and
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secondly SA-II give fairly good results in terms of error for allude date combinations and these methods are
quite effective for the considered small size problems. On the other hand, the random search gives the worst
results for all due date combinations.

5.2. The large size problem results

The results of the large size problems (100 6 n 6 1000) were also computed using heuristic methods. Since
the optimal results of these problems have not been known, the results of the heuristics were compared with
the best result for defining their performances. In this comparison, the error, formulated below, was used as a
performance measure:
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The experimental set of the large size problems is given in Table 5. As seen in Table 5, totally 400 problems
were solved.
5
rameters for larger size problem (n 6 25)

eter Alternatives Values

sing time (pj) 1 �U[1,100]
er of jobs (n) 10 100,200, . . . , 1000
ate range (DDR) 4 �U[0 � Cmax/2]

�U[0 � Cmax]
�U[Cmax/2 � Cmax]
�U[0 � 3Cmax/2]

er of solution problem 10

problem 1 · 10 · 4 · 10 = 400

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

100 200 300 400 500 600 700 800 900 1000

number of job (n)

er
ro

r

random

TS-I

TS-II

TS-III

SA-I

SA-II

SA-III

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

100 200 300 400 500 600 700 800 900 1000

number of job (n)

er
ro

r

random

TS-I

TS-II

TS-III

SA-I

SA-II

SA-III

100 200 300 400 500 600 700 800 900 1000

number of job (n)

random

TS-I

TS-II

TS-III

SA-I

SA-II

SA-III

100 200 300 400 500 600 700 800 900 1000

number of job (n)

random

TS-I

TS-II

TS-III

SA-I

SA-II

SA-III

(b)

(d)

Average heuristic errors for the different due date ranges (100 6 n 6 1000). (a) [0 � Cmax/2], (b) [0 � Cmax], (c) [Cmax/2 � Cmax], (d)

max/2].



0

2000

4000

6000

8000

10000

12000

14000

100 200 300 400 500 600 700 800 900 1000

number of job (n)
C

P
U

 ti
m

e 
(s

)

random

TS-I

TS-II

TS-III

SA-I

SA-II

SA-III

Fig. 5. The average CPU times of heuristics for100 6 n 6 1000.
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Fig. 4 presents, the solution qualities of heuristics for large size problems according to the due date range
values. The TS-III gives the best results of the problem for all due date range values. Again the random search
gives the worst results for large size problems for all due date values. According to Fig. 4, mostly tabu search
based methods gave better results than the simulated annealing methods, except for SA-III. SA-III also gave
fairly good results for all due date ranges.

The execution times of heuristics for small size problems were so small that they were neglected. However,
the average execution times of the heuristics for large size problems cannot be neglected as shown in Fig. 5. It
is clear from this Fig. 5 that the longest execution times belong to the random search and TS-I follows it.

6. Conclusion

In this paper, we consider the single machine total tardiness problem with the consideration of the learning
effect. An integer programming model was developed for the problem and the solution results were obtained
up to 25 job size. Due date data of the problem were generated from four distinct ranges. Three heuristic meth-
ods that are the tabu search based, simulated annealing based and the random search and their variations were
proposed to get the solutions of the problem with up to 1000 jobs. According to the experimental compari-
sons, tabu search based methods have given better solution values about solution quality than the results
of simulated annealing and random search for all due date ranges except for SA-III. SA-III has given also
good results as TS-III. The two methods used the same initial solution taken from EG heuristic. As a result,
it can be stated that there is a virtual superior impact of EG heuristic on the effectiveness of SA-III and TS-III.

By this study, meta heuristic methods were firstly used for the learning effect scheduling problem and also
the total tardiness that is one of the well known and used criterion in scheduling literature was considered
under the learning effect.

In scheduling the multi-machine or multi-criteria cases under the learning effects can be also interesting
issues for future studies.
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Erratum

Erratum to ‘‘Minimizing total tardiness in a scheduling problem with a
learning effect’’ [Appl. Math. Model. 31 (2007) 1351–1361]

Dehua Xu, Yunqiang Yin ⇑
School of Mathematics and Information Sciences, East China Institute of Technology, Fuzhou, Jiangxi 344000, China
As we observe, there are some errors in the 0–1 integer programming model of the paper [1]. In this erratum, we point out
these errors and correct them.

The objective function of the model should be ‘‘Min
Pn

r¼1Tr ’’.
The line just before constraint set (5) should be deleted since it has nothing to do with the model (the notation A1 in that

line is not defined).
Constraint set (5) should be replaced by
0307-9
doi:10.

DOI o
⇑ Cor

E-m
Cr P Cr�1 þ
Xn

j¼1

raZjrpj; r ¼ 1;2; . . . ;n ð5Þ
and
C0 ¼ 0:
We believe that there is a typo in the original version of constraint set (5), i.e., ‘‘Cr�1’’ is misprinted as ‘‘Cr � 1’’. And we believe
that it is better we replace ‘‘pr’’ with ‘‘

Pn
j¼1raZjrpj’’ in order to avoid misunderstanding since pr can also be understood as the

processing time of job r according to the definition of the notation ‘‘pj’’ in Section 2.
The line just after constraint set (6) should be ‘‘Zjr = 0 or 1 (j = 1,2, . . . ,n; r = 1,2, . . . ,n) and all the other variables are non-

negative integers.’’ since Tr may be zero.
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