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Abstract. In the present work, a common fixed point theorem for self maps
on cone metric spaces is proved. Also two examples, which shows that our
main theorem is generalized version of main theorems of [A. Branciari, Int. J.
Math. Math. Sci., 29 (2002), no. 9, 531–536] and [L.G. Huang and X. Zhang,
J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476] are given.

1. Introduction

There are a lot of generalizations of Banach fixed point principle in the literature.
One of the most interesting generalization of it has been given by Branciari [10].
Branciari has made this by taking integral type contraction instead of ordinary
contraction. He has given an example showing that the integral type contraction
is more general than ordinary contraction. This interesting fixed point result is
as follows:

Theorem 1.1 ([10]). Let (X, d) be a complete metric space, k ∈ (0, 1) and T :
X → X be mapping such that for each x, y ∈ X one has∫ d(Tx,Ty)

0

f(t)dt ≤ k

∫ d(x,y)

0

f(t)dt (1.1)

where f : [0,∞) → [0,∞] is a Lebesque integrable mapping which is finite integral
on each compact subset of [0,∞), non-negative and such that for each t > 0,
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0
f(s)ds > 0. Then T has a unique fixed point z ∈ X such that for each x ∈ X,

limn→∞ T
nx = z.

Since then many fixed point theorists have given some fixed point and common
fixed point results using integral type contractions (see for example [3, 4, 5, 18,
23, 24, 27]).

On the other hand, existence of fixed point in cone metric space has been
considered recently in [14]. Before giving this result, we recall some definitions
and properties of cone metric spaces.

Let E be a real Banach space and P be a subset of E. By θ we denote the
zero element of E and by IntP the interior of P . The subset P is called a cone
if and only if:

(i) P is closed, nonempty and P 6= {θ},
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P =⇒ ax+ by ∈ P,
(iii) x ∈ P and −x ∈ P =⇒ x = θ.

A cone P is called solid if it contains interior points, that is, if IntP 6= ∅. Given
a cone P ⊂ E, we define a partial ordering � with respect to P by x � y if and
only if y− x ∈ P . We shall write x ≺ y if x � y and x 6= y, we shall write x� y
if y − x ∈ IntP . The cone P is called normal if there is a number K > 0 such
that for all x, y ∈ E, θ � x � y implies ‖x‖ ≤ K ‖y‖ . The least positive number
satisfying the above is called the normal constant of P .

The following example shows that there are non-normal cones.

Example 1.2 ([22]). Let E = C2
R([0, 1]) with the norm ||f || = ||f ||∞ + ||f ′||∞

and consider the cone P = {f ∈ E : f ≥ 0}. For each K > 1, put f(x) = x and
g(x) = x2K . Then 0 ≤ g ≤ f, ||f || = 2 and ||g|| = 2K + 1. Since K ||f || < ||g|| ,
K is not normal constant of P . Therefore, P is a non-normal cone.

In the following we always suppose that E is a real Banach space, P is a cone
in E with IntP 6= ∅ and � a partial ordering with respect to P .

Definition 1.3 ([14]). Let X be a nonempty set. Suppose the mapping d :
X ×X → E satisfies

(d1) θ ≺ d(x, y) for all x, y ∈ X with x 6= y and d(x, y) = θ if and only if
x = y,

(d2) d(x, y) = d(y, x) for all x, y ∈ X,
(d3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

It is obvious that the cone metric spaces generalize metric spaces.

Example 1.4 ([14]). Let E = R2, P = {(x, y) ∈ E | x, y ≥ 0}, X = R and
d : X × X → E such that d(x, y) = (|x− y| , α |x− y|), where α ≥ 0 is a
constant. Then (X, d) is a cone metric space.

Definition 1.5 ([14]). Let (X, d) be a cone metric space. Let {xn} be a sequence
in X and x ∈ X. If for every c ∈ E with θ � c there is N such that for all n > N ,
d(xn, x) � c, then {xn} is said to be convergent and {xn} converges to x and x
is the limit of {xn}. We denote this by limn→∞ xn = x or xn → x as n → ∞. If
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for every c ∈ E with θ � c there is N such that for all n,m > N , d(xn, xm) � c,
then {xn} is called a Cauchy sequence in X. (X, d) is a complete cone metric
space if every Cauchy sequence is convergent.

Lemma 1.6 ([14]). Let (X, d) be a cone metric space, P be a normal cone and
let {xn} be a sequence in X. Then

(i) {xn} converges to x if and only if d(xn, x) → θ (n→∞),
(ii) {xn} is a Cauchy sequence if and only if d(xn, xm) → θ (n,m→∞).

Let (X, d) be a cone metric space, T : X → X and x0 ∈ X. Then the function
T is continuous at x0 if for any sequence xn → x0 we have Txn → Tx0 [15].

Now we give the result of Huang and Zhang.

Theorem 1.7 ([14]). Let (X, d) be a complete cone metric space, P be a normal
cone with normal constant K. Suppose the mapping f : X → X satisfies the
contractive condition

d(fx, fy) � kd(x, y) for all x, y ∈ X, (1.2)

where k ∈ [0, 1) is a constant. Then f has a unique fixed point in X.

Also, Huang and Zhang [14] gave an example showing that Theorem 1.7 is a
generalization of Banach fixed point principle.

After the definition of the concept of cone metric space, fixed point theory on
these spaces has been developing (see for example [1, 2, 6, 7, 8, 9, 11, 13, 16, 17,
19, 20, 21, 22, 25, 26]).

The aim of this work is to give a fixed point result using the ideas of Branciari
[10] (or Zhang [27]) and Huang and Zhang [14]. Our result a generalized version
of both Theorem 1.1 and Theorem 1.7 in cone metric spaces.

Let (X, d) be a cone metric space with the real Banach space E and the cone
P . Let Qa = {u ∈ P : ‖u‖ < a, a ∈ (0,∞]} and let F : Qa → P satisfy that

(F1) F (θ) = θ and θ ≺ F (u) for each u ∈ Qa\{θ},
(F2) F is nondecreasing on Qa, that is, u, v ∈ Qa and u � v implies F (u) �

F (v),
(F3) F is continuous.
(F4) F (un) → θ implies un → θ as n→∞.

Define F(E,P,Qa) = {F | F : Qa → P satisfies (F1)-(F4)}.

Example 1.8.

(a) Let E be a real Banach space and P be a cone in E. Define F : Qa → P
with F (u) = u, then F ∈ F(E,P,Qa) for all a ∈ (0,∞].

(b) Let E = R be real numbers, P1 = [0,∞). Suppose that φ is nonnegative,
Lebesque integrable on [0,∞) and satisfies

ε∫
0

φ(s)ds > 0 for each ε > 0.

Let F (u) =
u∫
0

φ(s)ds. Then F ∈ F(R, P1, Qa) for all a ∈ (0,∞].
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(c) Let P2 = {(x, y) ∈ R2 : x, y ≥ 0} and F1(u) = (‖u‖ , α ‖u‖). Then
F1 ∈ F(R2, P2, Qa) for all a ∈ (0,∞], where α ≥ 0. Similarly, let

F2(u) =

 ‖u‖∫
0

φ(s)ds, α

‖u‖∫
0

φ(s)ds

 .

Then F2 ∈ F(R2, P2, Qa) for all a ∈ (0,∞], where α and φ as above.
(d) Let E = CR[0, 1] with the supremum norm, P3 = {f ∈ E : f ≥ 0} and

F (u) =
‖u‖

1 + ‖u‖
ψ. Then F ∈ F(E,P3, Qa) for all a ∈ (0,∞], where

ψ ∈ IntP3.

(e) Let E = l1, P4 = {{xn} ∈ E : xn ≥ 0, for all n} and F (u) =
‖u‖
2n

. Then

F ∈ F(E,P4, Qa) for all a ∈ (0,∞].

Definition 1.9 ([11]). Let P be a cone on a Banach space E. A nondecreasing
function ϕ : P → P is called ϕ-map if

(ϕ1) ϕ(θ) = θ and θ ≺ ϕ(ω) ≺ ω for ω ∈ P\{θ},
(ϕ2) ω ∈ IntP implies ω − ϕ(ω) ∈ IntP,
(ϕ3) limn→∞ ϕ

n(ω) = θ for every ω ∈ P\{θ}.

There is an example of ϕ-map in [12].

2. Main results

Let E be a real Banach space, P be a cone in E and � is partial ordering with
respect to P . We consider the following condition for convenience:{

If {un} is a sequence in E such that ‖un‖ is convergent,
then {un} has an upper limit in E w.r.t � .

(2.1)

It is clear that R2 is satisfied the condition (2.1) with the cone P2. In the following
theorem we assume that E satisfies the condition (2.1).

Theorem 2.1. Let (X, d) be a complete cone metric space with the normal cone
P on a Banach space E. Let D = sup{‖d(x, y)‖ : x, y ∈ X} and set a = D if
D = ∞ and a > D if D < ∞. Suppose that T, S : X → X, F ∈ F(E,P,Qa)
satisfy

F (d(Tx, Sy)) � ϕ(F (d(x, y))), (2.2)

for all x, y ∈ X, where ϕ is a continuous ϕ-map. Then T and S have a unique
common fixed point in X.

Proof. First we prove that any fixed point of T is also a fixed point of S, and
conversely. If Tx = x but Sx 6= x, then we have from (2.2)

F (d(x, Sx)) = F (d(Tx, Sx)) � ϕ(F (θ)) = θ,

which is a contradiction. So Sx = x. Similarly, if Sx = x, then Tx = x.
Now we show that if T and S have a common fixed point, then the fixed point

is unique. Let Tx = Sx = x and Ty = Sy = y. If x 6= y, then we have from (2.2)

F (d(x, y)) = F (d(Tx, Sy)) � ϕ(F (d(x, y))),
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which is a contradiction. Thus x = y.
Let x0 ∈ X and let x2n+1 = Tx2n, x2n+2 = Sx2n+1 for all n = 0, 1, 2, · · · .

Suppose that for any n, xn+1 6= xn. Otherwise T or S has a fixed point and the
proof is complete. Now we show that

F (d(xn+1, xn)) � ϕ(F (d(xn, xn−1)))

≺ F (d(xn, xn−1)) for n ≥ 1. (2.3)

We have that

F (d(x2n+1, x2n)) = F (d(Tx2n, Sx2n−1))

� ϕ(F (d(x2n, x2n−1)))

≺ F (d(x2n, x2n−1)). (2.4)

Similarly we have

F (d(x2n+2, x2n+1)) = F (d(Sx2n+1, Tx2n))

� ϕ(F (d(x2n+1, x2n)))

≺ F (d(x2n+1, x2n)). (2.5)

Therefore from (2.4) and (2.5) we have (2.3). Then from (2.3)

F (d(xn+1, xn)) � ϕ(F (d(xn, xn−1)))

� ϕ2(F (d(xn−1, xn−2)))
...

� ϕn(F (d(x1, x0))).

Fix θ � c and we choose a positive real number δ such that c + Nδ(θ) ⊂ IntP ,
where Nδ(θ) = {x ∈ P : ‖x‖ < δ}. Also, choose a natural number n0 such that
ϕn(F (d(x1, x0))) ∈ Nδ(θ), for all n ≥ n0. Then

ϕn(F (d(x1, x0))) � c,

for all n ≥ n0. Consequently F (d(xn+1, xn)) � c, for all n ≥ n0. From (F4), we
have, for all θ � c, there exists a natural number n0 such that for all n ≥ n0

d(xn+1, xn) � c.

Now we claim that {xn} is a Cauchy sequence in X. If not, there exists ε > 0
for which we can find subsequences {xmk

} and {xnk
} of {xn} with nk > mk > k

such that

ε ≤ ‖d (xmk
, xnk

)‖ .
Further, corresponding to odd numbers mk, we can choose even numbers nk in
such a way that it is the smallest integer with nk > mk such that

∥∥d (
xmk

, xnk−2

)∥∥
< ε and ε ≤ ‖d (xmk

, xnk
)‖. From

ε ≤ ‖d (xmk
, xnk

)‖
≤

∥∥d (
xmk

, xnk−2

)∥∥ +
∥∥d(xnk−2

, xnk
)
∥∥ < ε+

∥∥d (
xnk−2

, xnk

)∥∥ ,
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it follows

lim
k→∞

‖d (xmk
, xnk

)‖ = ε.

Now∥∥d (
xnk−1

, xmk−1

)∥∥ ≤ ∥∥d (
xnk−1

, xnk

)∥∥ + ‖d(xnk
, xmk

)‖+
∥∥d (

xmk
, xmk−1

)∥∥
and

‖d (xnk
, xmk

)‖ ≤
∥∥d (

xnk
, xnk−1

)∥∥ +
∥∥d(xnk−1

, xmk−1
)
∥∥ +

∥∥d (
xmk−1

, xmk

)∥∥
gives

lim
k→∞

∥∥d (
xmk−1

, xnk−1

)∥∥ = ε.

Therefore from the condition (2.1) there exists θ � c such that

lim sup
k→∞

d (xmk
, xnk

) = lim sup
k→∞

d
(
xmk−1

, xnk−1

)
= c.

Setting x = xmk−1
and y = xnk−1

in (2.2), we obtain

F (d(xmk
, xnk

)) = F (d(Txmk−1
, Sxnk−1

))

� ϕ(F (d(xmk−1
, xnk−1

)))

which on take upper limit

F (c) � ϕ(F (c)) ≺ F (c)

a contradiction which shows that {xn} is a Cauchy sequence in X, and so xn → u,
for some u in X. Take x = x2n and y = u in (2.2), we have

F (d(Tx2n, Su)) � ϕ(F (d(x2n, u)))

and

F (d(u, Su)) = ϕ(F (θ)) = θ

implies that d(u, Su) = θ, and u = Su. �

Corollary 2.2. Let (X, d) be a complete cone metric space with the normal cone
P on a Banach space E. Let D = sup{‖d(x, y)‖ : x, y ∈ X} and set a = D if
D = ∞ and a > D if D <∞. Suppose that T : X → X, F ∈ F(E,P,Qa) satisfy

F (d(Tx, Ty)) � ϕ(F (d(x, y))), (2.6)

for all x, y ∈ X, where ϕ is a continuous ϕ-map. Then T has a unique fixed point
in X.

Remark 2.3. Corollary 2.2 is a generalized version of Theorem 1.1. Indeed, if we
take E = R, P1 = [0,∞), F ∈ F(R, P1, Qa) as in Example 1.8 (b) and ϕ(ω) = kω
(k ∈ [0, 1)) in Corollary 2.2, we have Theorem 1.1.

The following example supports this remark.

Example 2.4. Let E = R2 with the Euclidean norm, and P2 = {(x, y) ∈ R2 :
x, y ≥ 0} a cone in E. Let

X = {(x, 0) ∈ R2 : 0 ≤ x ≤ 1} ∪ {(0, x) ∈ R2 : 0 ≤ x ≤ 1}
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and let d : X ×X → E defined by (as in [14])

d((x, 0), (y, 0)) = (
4

3
|x− y| , |x− y|),

d((0, x), (0, y)) = (|x− y| , 2
3
|x− y|)

d((x, 0), (0, y)) = d((0, y), (x, 0)) = (
4

3
x+ y, x+

2

3
y).

Then (X, d) is a complete cone metric space.

Let mapping T : X → X with T (x, 0) = (0, x) and T (0, x) = (
x

2
, 0). It is easy

to see that T satisfies the condition (2.6) of Corollary 2.2 with F (u) = u and
ϕ(ω) = 3

4
ω. Therefore, we can apply Corollary 2.2 to this example. Note that,

the conditions of Theorem 1.1 are not satisfied if d is the usual metric in R2. For
example, if d is the usual metric in R2, then there are not a function f and a
constant k ∈ (0, 1) satisfying the condition (1.1) for x = (1, 0) and y = (0, 0) in
X.

Remark 2.5. Theorem 2.1 is a generalized version of Theorem 1.7. Indeed, if
we take F ∈ F(E,P,Qa) defined by F (u) = u and ϕ(ω) = kω (k ∈ [0, 1)) in
Theorem 2.1, we have Theorem 1.7.

The following example supports this remark.

Example 2.6. Let E = R2 with the maximum norm, and P2 = {(x, y) ∈ R2 :
x, y ≥ 0} a cone in E. Let X = { 1

n
: n = 1, 2, · · · } ∪ {0} and let d : X ×X → E

defined by d(x, y) = (|x− y| , |x− y|). Then (X, d) is a complete cone metric

space and D = 1. Let F (θ) = θ and F (u) =
(
‖u‖

1
‖u‖ , α ‖u‖

1
‖u‖

)
, for u ∈ Qe\{θ}.

Then F ∈ F(R2, P2, Qe) and let ϕ(ω) = 1
2
ω. Suppose that T and S are mappings

on X defined by

Tx = Sx =


0 , x = 0

1

n+ 1
, x =

1

n
.

Now we prove that, for each x, y ∈ X,

F (d(Tx, Sy)) � ϕ(F (d(x, y))).

For each x, y ∈ X we have

F (d(Tx, Sy)) =

‖d(Tx, Sy)‖ 1

‖d(Tx, Sy)‖ , α ‖d(Tx, Sy)‖

1

‖d(Tx, Sy)‖


=

|Tx− Sy|

1

|Tx− Sy| , α |Tx− Sy|

1

|Tx− Sy|

 ,
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since ‖d(Tx, Sy)‖ = ‖(|Tx− Sy| , |Tx− Sy|)‖ = |Tx− Sy|. On the other hand,
for each x, y ∈ X we have

ϕ(F (d(x, y))) =
1

2
F (d(x, y))

=
1

2

‖d(x, y)‖ 1

‖d(x, y)‖ , α ‖d(x, y)‖

1

‖d(x, y)‖


=

1

2

|x− y|

1

|x− y| , α |x− y|

1

|x− y|

 .

Now using Example 2 of [27] for each x, y ∈ X we have

|Tx− Sy|

1

|Tx− Sy| ≤ 1

2

|x− y|

1

|x− y|


and therefore we have

F (d(Tx, Sy)) =

|Tx− Sy|

1

|Tx− Sy| , α |Tx− Sy|

1

|Tx− Sy|


� 1

2

|x− y|

1

|x− y| , α |x− y|

1

|x− y|


= ϕ(F (d(x, y))).

This shows that the condition (2.2) of Theorem 2.1 is satisfied. Now suppose
there exists k ∈ [0, 1) such that, for all x, y ∈ X,

d(Tx, Sy) � kd(x, y).

This implies, for all x, y ∈ X,

(|Tx− Ty| , |Tx− Ty|) � k(|x− y| , |x− y|)
or

|Tx− Ty| ≤ k |x− y| . (2.7)

But we can not get the inequality (2.7). To see this, let x =
1

n
and y =

1

n+ 1
.

Then we have

|Tx− Sy| = 1

(n+ 1)(n+ 2)
, |x− y| = 1

n(n+ 1)

and so

sup
x,y∈X,x 6=y

|Tx− Sy|
|x− y|

≥ sup
n∈N

∣∣T 1
n
− S 1

n+1

∣∣∣∣ 1
n
− 1

n+1

∣∣ = 1.

Therefore the condition (1.2) of Theorem 1.7 is not satisfied.
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