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ON FIXED POINT THEOREMS FOR MULTIVALUED

MAPPINGS OF FENG-LIU TYPE

Ishak Altun and Gülhan Mınak

Abstract. In the present paper, considering the Jleli and Samet’s tech-
nique we give many fixed point results for multivalued mappings on com-
plete metric spaces without using the Pompeiu-Hausdorff metric. Our
results are real generalization of some related fixed point theorems in-
cluding the famous Feng and Liu’s result in the literature. We also give
some examples to both illustrate and show that our results are proper
generalizations of the mentioned theorems.

1. Introduction and preliminaries

LetX be any nonempty set. An element x ∈ X is said to be a fixed point of a
multivalued mapping T : X → P (X) if x ∈ Tx, where P (X) denotes the family
of all nonempty subsets of. Let (X, d) be a metric space. We denote the family
of all nonempty closed and bounded subsets of X by CB(X), the family of all
nonempty closed subsets ofX by C(X) and the family of all nonempty compact
subsets of X by K(X). It is clear that K(X) ⊆ CB(X) ⊆ C(X) ⊆ P (X). For
A,B ∈ C(X), let

H(A,B) = max

{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}

,

where d(x,B) = inf {d(x, y) : y ∈ B}. Then H is called generalized Pompei-
Hausdorff distance on C(X). It is well known that H is a metric on CB(X),
which is called Pompei-Hausdorff metric induced by d. We can find detailed
information about the Pompeiu-Hausdorff metric in [4, 9].

Let T : X → CB(X). Then, T is called multivalued contraction if there
exists L ∈ [0, 1) such that H(Tx, T y) ≤ Ld(x, y) for all x, y ∈ X (see [15]).
In 1969, Nadler [15] proved that every multivalued contraction on complete
metric space has a fixed point. Then, the fixed point theory of multivalued
contraction has been further developed in different directions by many authors,
in particular, by Reich [17], Mizoguchi-Takahashi [14], Klim-Wardowski [12],

Received July 1, 2014.
2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25.
Key words and phrases. fixed point, multivalued mappings, θ-contraction, complete met-

ric space.

c©2015 Korean Mathematical Society

1901



1902 ISHAK ALTUN AND GÜLHAN MINAK

Berinde-Berinde [3], Ćirić [5] and many others [6, 7, 11, 18]. Also, Feng and
Liu [8] gave the following theorem without using generalized Pompei-Hausdorff
distance. To state their result, we give the following notation for a multivalued
mapping T : X → C(X): let b ∈ (0, 1) and x ∈ X define

Ixb = {y ∈ Tx : bd(x, y) ≤ d(x, Tx)}.

Theorem 1 ([8]). Let (X, d) be a complete metric space and T : X → C(X).
If there exists a constant c ∈ (0, 1) such that there is y ∈ Ixb satisfying

d(y, T y) ≤ cd(x, y)

for all x ∈ X. Then T has a fixed point in X provided that c < b and the

function x → d(x, Tx) lower semi-continuous.

As mentioned in Remark 1 of [8], we can see that Theorem 1 is a real
generalization of Nadler’s.

On the other hand, a new type of contractive mappings has been introduced
by Jleli and Samet [10] for single-valued mappings. Throughout this study, we
called it as θ-contraction (see [13]).

Let Θ be the set of all functions θ : (0,∞) → (1,∞) satisfying the following
conditions:

(Θ1) θ is nondecreasing,
(Θ2) for each sequence {tn} ⊂ (0,∞) , limn→∞ θ(tn) = 1 if and only if

limn→∞ tn = 0+,

(Θ3) there exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+
θ(t)−1

tr
= l.

Let (X, d) be a metric space, T : X → X. Then, we say that T is θ-
contraction if there exist k ∈ (0, 1) and θ ∈ Θ such that

(1.1) θ(d(Tx, T y)) ≤ [θ(d(x, y))]k

for all x, y ∈ X with d(Tx, T y) > 0.
If we consider the different type of mapping θ in above, we obtain some

of variety of contractions. For example, let θ : (0,∞) → (1,∞) be given by

θ(t) = e
√

t. It is clear that θ ∈ Θ. Then (1.1) turns to

(1.2) d(Tx, T y) ≤ k2d(x, y)

for all x, y ∈ X with d(Tx, T y) > 0.
It is clear that for x, y ∈ X such that d(Tx, T y) = 0, the inequality (1.2) also

holds. Therefore T is an ordinary contraction. Similarly, let θ : (0,∞) → (1,∞)

be given by θ(t) = e
√

tet . It is clear that θ ∈ Θ. Then (1.1) turns to

(1.3)
d(Tx, T y)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ k2

for all x, y ∈ X with d(Tx, T y) > 0.
In addition, we have concluded that every θ-contraction T is a contractive

mapping, i.e., d(Tx, T y) < d(x, y) for all x, y ∈ X, Tx 6= Ty. Thus, every θ-
contraction is a continuous mapping. On the other side, Example in [10] shows
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that the mapping T is not ordinary contraction but, it is a θ-contraction with

θ(t) = e
√

tet . Thus, the following theorem, which was given as a corollary by
Jleli and Samet, is a proper generalization of Banach Contraction Principle.

Theorem 2 (Corollary 2.1 of [10]). Let (X, d) be a complete metric space and

T : X → X be a θ-contraction. Then T has a unique fixed point in X.

Later, the technique of Jleli and Samet was used by Mınak et al. [13] for mul-
tivalued mappings. They introduced the concept of multivalued θ-contraction
and obtained some fixed point results for these type of mappings on complete
metric spaces.

Let (X, d) be a metric space and T : X → CB(X). Then, we say that T is
a multivalued θ-contraction if there exist θ ∈ Θ and k ∈ (0, 1) such that

θ(H(Tx, T y)) ≤ [θ(d(x, y))]
k

for all x, y ∈ X with H(Tx, T y) > 0. We can easily obtain that every multival-

ued contraction is also multivalued θ-contraction with θ(t) = e
√

t.

Theorem 3 ([13]). Let (X, d) be a complete metric space and T : X → K(X)
be a multivalued θ-contraction. Then T has a fixed point in X.

Example 1 in [13] shows that we cannot take CB(X) instead of K(X) in
Theorem 3. However, we can take CB(X) instead of K(X) by adding the
following weak condition on θ:

(Θ4) θ(inf A) = inf θ(A) for all A ⊂ (0,∞) with inf A > 0.
Note that, if θ satisfies (Θ1), then it satisfies (Θ4) if and only if it is right

continuous. Let

Ξ = {θ |θ : (0,∞) → (1,∞) satisfies (Θ1)-(Θ4)} .

Theorem 4 ([13]). Let (X, d) be a complete metric space and T : X → CB(X)
be a multivalued θ-contraction with θ ∈ Ξ. Then T has a fixed point in X.

In the present paper, considering the Jleli and Samet’s [10] technique, a new
type contraction for multivalued mappings in metric spaces is introduced and
the conditions guaranteeing the existence of a fixed point for such mappings
in complete metric spaces are established. Our results generalize, improve and
extend not only the results derived by Nadler [15] and Feng-Liu [8] but also
various other related results in the literature.

2. Main results

Let T : X → P (X), θ ∈ Θ and s ∈ (0, 1]. Define the set θxs ⊆ X as

θxs = {y ∈ Tx : [θ(d(x, y))]
s
≤ θ(d(x, Tx))}

for x ∈ X with d(x, Tx) > 0. It is clear that if s ≤ t, then θxt ⊆ θxs for fixed
x ∈ X .

For this set, we need the consider the following cases:
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Case 1. If T : X → K(X), then we have θxs 6= ∅ for all s ∈ (0, 1] and
x ∈ X with d(x, Tx) > 0. Indeed, since Tx is compact, we have y ∈ Tx such
that d(x, y) = d(x, Tx) for every x ∈ X . Therefore, we have θ(d(x, y)) =
θ(d(x, Tx)) for every x ∈ X with d(x, Tx) > 0. Thus y ∈ θxs for all s ∈ (0, 1].

Case 2. If T : X → C(X), then θxs may be empty for some x ∈ X and

s ∈ (0, 1]. For example, let X = {0} ∪ (1, 2), d(x, y) = |x− y| and θ(t) = e
√

t

for t ≤ 1 and θ(t) = 9t for t > 1. Define T : X → C(X) by T 0 = (1, 2) and
Tx = {0} for x ∈ (1, 2). Then, d(0, T 0) = 1 > 0 and

θ01
2

= {y ∈ T 0 : [θ(d(0, y))]
1
2 ≤ θ(d(0, T 0))}

= {y ∈ (1, 2) : [θ(y)]
1
2 ≤ θ(1)}}

= {y ∈ (1, 2) : 3
√
y ≤ e}

= ∅.

Case 3. If T : X → C(X) (even if T : X → P (X)) and θ ∈ Ξ, then we have
θxs 6= ∅ for all s ∈ (0, 1) and x ∈ X with d(x, Tx) > 0. To see this, let x ∈ X

with d(x, Tx) > 0 and

α = inf{θ(d(x, y)) : y ∈ Tx}.

Then by (Θ4), we have

α = inf{θ(d(x, y)) : y ∈ Tx}

= θ(inf{d(x, y) : y ∈ Tx})

= θ(d(x, Tx)) > 1.

Now we claim that for all s ∈ (0, 1) there exists y ∈ Tx such that

[θ(d(x, y))]
s
≤ α.

Assume the contrary, that is, there exists s ∈ (0, 1) such that [θ(d(x, y))]s > α

for all y ∈ Tx. Then

(2.1) α < [θ(d(x, y))]s < θ(d(x, y))

for all y ∈ Tx and some s ∈ (0, 1). Taking infimum over y ∈ Tx in (2.1), we
get α = αs for some s ∈ (0, 1) , which contradicts to α > 1. Therefore, our
claim is true, which implies θxs 6= ∅.

Considering the above facts, we give the following theorems:

Theorem 5. Let (X, d) be a complete metric space and T : X → K(X). If
there exist k ∈ (0, 1) and θ ∈ Θ such that there is y ∈ θxs (s ∈ (0, 1]) satisfying

θ(d(y, T y)) ≤ [θ(d(x, y))]
k

for all x ∈ X with d(x, Tx) > 0. Then T has a fixed point in X provided that

k < s and the function x → d(x, Tx) is lower semi-continuous.
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Proof. Suppose that T has no fixed point. Then, for all x ∈ X we have
d(x, Tx) > 0. Since Tx ∈ K(X) for every x ∈ X , the set θxs is nonempty
for any s ∈ (0, 1]. Let x0 ∈ X be any initial point, as Tx0 ∈ K(X), then there
exists x1 ∈ θx0

s such that

θ(d(x1, T x1)) ≤ [θ(d(x0, x1))]
k

and for x1 ∈ X , there exists x2 ∈ θx1
s satisfying

θ(d(x2, T x2)) ≤ [θ(d(x1, x2))]
k
.

By the way, we can construct a sequence {xn} in X , where xn+1 ∈ θxn

s and

(2.2) θ(d(xn+1, T xn+1)) ≤ [θ(d(xn, xn+1))]
k
.

We will verify that {xn} is a Cauchy sequence. Since xn+1 ∈ θxn

s , we have

(2.3) [θ(d(xn, xn+1))]
s
≤ θ(d(xn, T xn)).

From (2.2) and (2.3) we have

(2.4) θ(d(xn+1, T xn+1)) ≤ [θ(d(xn, T xn))]
k

s

and

(2.5) θ(d(xn+1, xn+2)) ≤ [θ(d(xn, xn+1))]
k

s .

By the way, we can obtain

(2.6) 1 < θ(d(xn, xn+1)) ≤ [θ(d(x0, x1))]
( k

s
)n

and

(2.7) 1 < θ(d(xn, T xn)) ≤ [θ(d(x0, T x0))]
( k

s
)n

.

From (2.6), we get limn→∞ θ(d(xn, xn+1)) = 1. Thus, from (Θ2), we obtain

lim
n→∞

d(xn, xn+1) = 0+

and so from (Θ3) there exists r ∈ (0, 1) and l ∈ (0,∞] such that

lim
n→∞

θ(d(xn, xn+1))− 1

[d(xn, xn+1)]
r = l.

As in the proof of Theorem 2.1 of [10], we can show that {xn} is a Cauchy
sequence in X . Since X is a complete metric space, there exists z ∈ X such
that limn→∞ xn = z. On the other hand, from (2.7) and (Θ2) we have

lim
n→∞

d(xn, T xn) = 0+.

Since x → d(x, Tx) is lower semi-continuous, then

0 ≤ d(z, T z) ≤ lim inf
n→∞

d(xn, T xn) = 0,

which contradicts that d(z, T z) > 0. Hence T has a fixed point. �
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If we analyze Example 1 in [13], we cannot take CB(X) instead of K(X) in
Theorem 5. In the following theorem, we replace C(X) by K(X), but we need
to take θ ∈ Ξ.

Theorem 6. Let (X, d) be a complete metric space and T : X → C(X). If

there exist k ∈ (0, 1) and θ ∈ Ξ such that there is y ∈ θxs (s ∈ (0, 1)) satisfying

θ(d(y, T y)) ≤ [θ(d(x, y))]k

for all x ∈ X with d(x, Tx) > 0. Then T has a fixed point in X provided that

k < s and the function x → d(x, Tx) is lower semi-continuous.

Proof. Suppose that T has no fixed point. Then, for all x ∈ X we have
d(x, Tx) > 0. Since θ ∈ Ξ, for any x ∈ X the set θxs is nonempty for any
s ∈ (0, 1). Let x0 ∈ X be any initial point, then there exists x1 ∈ θx0

s such that

(2.8) θ(d(x1, T x1)) ≤ [θ(d(x0, x1))]
k
.

From (Θ4) we can write

θ(d(x1, T x1)) = inf
y∈Tx1

θ(d(x1, y)),

and so from (2.8) we have

(2.9) inf
y∈Tx1

θ(d(x1, y)) ≤ [θ(d(x0, x1))]
k
< [θ(d(x0, x1))]

k+1

2 .

Then, from (2.9) there exists x2 ∈ Tx1 such that

θ(d(x1, x2)) ≤ [θ(d(x0, x1))]
k+1

2 .

By the way, we can construct a sequence {xn} in X such that xn+1 ∈ Txn and

θ(d(xn, xn+1)) ≤ [θ(d(xn−1, xn))]
k+1

2

for all n ∈ N. Finally, in order to obtain the result it is enough to argue as in
the proof of Theorem 5 by considering the closedness of Tz. �

Remark 1. If we take θ(t) = e
√

t, k =
√
c and s =

√
b in Theorem 6, then we

have Theorem 1.

Remark 2. We can present a simple proof of Theorem 3 by Theorem 5. In
fact, suppose all conditions of Theorem 3 are satisfied. Since every multivalued
θ-contractions are multivalued nonexpansive and every multivalued nonexpan-
sive mappings are upper semi-continuous, then T is upper semi-continuous.
Therefore, the function x → d(x, Tx) is lower semi-continuous (see Proposition
4.2.6 of [1]). On the other hand, since T is multivalued θ-contraction, for each
x ∈ X with d(x, Tx) > 0 and y ∈ θxs (k < s) we have

θ(d(y, T y)) ≤ θ(H(Tx, T y)) ≤ [θ(d(x, y))]
k
.

Hence the hypotheses of Theorem 5 hold and so the existence of a fixed point
has been proved. Similarly, we can prove Theorem 4 by considering Theorem
6.
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The following example shows that Theorem 5 (resp. Theorem 6) is a proper
generalization of Theorem 3 (resp. Theorem 4).

Example 1. Consider the complete metric space (X, d) with X = { 1
3n−1 : n ∈

N} ∪ {0} and d(x, y) = |x− y|. Define a mapping T : X → C(X) as

Tx =

{

{ 1
3n , 1}, x = 1

3n−1 , n ≥ 1

{0, 13}, x = 0.

It is easy to see that

d(x, Tx) =

{

2
3n , x = 1

3n−1 , n > 1

0, x ∈ {0, 1} ,

and so x → d(x, Tx) is lower semi-continuous. Now, let θ(t) = e
√

t. If
d(x, Tx) > 0, then x = 1

3n−1 , n > 1. Thus for y = 1
3n ∈ Tx we have

[θ(d(x, y))]
s
≤ θ(d(x, y)) = θ(d(x, Tx))

for all s ∈ (0, 1] and

d(y, T y) =
2

3n+1
=

1

3

2

3n
=

1

3
d(x, y).

Therefore, y ∈ θxs and

θ(d(y, T y)) ≤ [θ(d(x, y))]
k

for 1
√

3
≤ k < s < 1. Hence, all conditions of Theorem 5 and Theorem 6 are

satisfied and so T has a fixed point.
On the other hand, since H(T 1

3 , T 0) =
2
3 and d(13 , 0) =

1
3 , then we have

θ(H(T
1

3
, T 0)) > θ(d(

1

3
, 0)) >

[

θ(d(
1

3
, 0))

]k

for all θ ∈ Θ and k ∈ (0, 1) . Thus, T is not multivalued θ-contraction. There-
fore, Theorem 3 and Theorem 4 can not be applied to this example.

In the following theorem, we replace P (X) by C(X), but we need to add an
extra condition.

Theorem 7. Let (X, d) be a complete metric space and T : X → P (X).
Suppose there exist k ∈ (0, 1) and θ ∈ Ξ such that there is y ∈ θxs satisfying

d(y, T y) > 0 and

θ(d(y, T y)) ≤ [θ(d(x, y))]
k

for all x ∈ X with d(x, Tx) > 0. If there exists x0 ∈ X with d(x0, T x0) > 0
such that for all convergent sequence {xn} with xn ∈ Txn−1, we have T (limxn)
is closed, then T has a fixed point in X provided that k < s and the function

x → d(x, Tx) is lower semi-continuous.
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Proof. Since d(x0, T x0) > 0, then there exists x1 ∈ θx0
s such that d(x1, T x1) >

0 and
θ(d(x1, T x1)) ≤ [θ(d(x0, x1))]

k
.

Also, since d(x1, T x1) > 0, there exists x2 ∈ θx1
s satisfying d(x2, T x2) > 0 and

θ(d(x2, T x2)) ≤ [θ(d(x1, x2))]
k
.

Continuing this process, we get an iterative sequence {xn} as in the proof of
Theorem 5 such that xn ∈ Txn−1 and {xn} is a Cauchy sequence. Since X is
complete, {xn} converges to a point of X , say z. By the hypotheses, we have
Tz is closed. On the other hand from (2.7) and (Θ2) we have

lim
n→∞

d(xn, T xn) = 0+.

Since x → d(x, Tx) is lower semi-continuous, then

0 ≤ d(z, T z) ≤ lim inf
n→∞

d(xn, T xn) = 0

and so z ∈ Tz. Hence T has a fixed point. �

If we take θ(t) = e
√

t, k =
√
c and s =

√
b in Theorem 7, then we obtain the

following corollary:

Corollary 1. Let (X, d) be a complete metric space and T : X → P (X).
Suppose there exists c ∈ (0, 1) such that there is y ∈ Ixb satisfying

(2.10) 0 < d(y, T y) ≤ cd(x, y)

for each x ∈ X with d(x, Tx) > 0. If there exists x0 ∈ X with d(x0, T x0) > 0
such that for all convergent sequence {xn} with xn ∈ Txn−1, we have T (limxn)
is closed, then T has a fixed point in X provided that c < b and the function

x → d(x, Tx) is lower semi-continuous.

Example 2. Consider the complete metric space (X, d) with X = [0, 1] and
d(x, y) = |x− y| . Define T : X → P (X) as

Tx =

{

(0, x
4 ], x ∈ (0, 1]

{0}, x = 0.

Since Tx is not closed for some x ∈ X , both Nadler’s and Feng-Liu’s results
can not be applied to this example. On the other hand if we take 1

4 ≤ c < b

and x0 ∈ (0, 1], then all conditions of Corollary 1 are satisfied. Indeed, if
d(x, Tx) > 0, then x ∈ (0, 1] and so, for y = x

4 ∈ Tx, we have

bd(x, y) = bd(x,
x

4
) = b

3x

4
<

3x

4
= d(x, Tx)

and

0 < d(y, T y) = d(
x

4
, T

x

4
) =

3x

16
=

1

4

3x

4
≤ c

3x

4
= cd(x, y).

That is, y ∈ Ixb for any x ∈ X with d(x, Tx) > 0 and (2.10) is satisfied.
Now, let x0 ∈ (0, 1], then we have 0 < xn ≤ x0

4n for the sequence {xn} with
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xn ∈ Txn−1 for all n ∈ N. Therefore {xn} converges to 0 and T 0 is closed.
Finally, the function f(x) = d(x, Tx) = 3x

4 is lower semi-continuous. Therefore
all conditions of Corollary 1 are satisfied and so T has a fixed point.
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