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We introduce a new Stancu type generalization of Srivastava-Gupta operators to approximate integrable functions on the interval
(0, 00) and estimate the rate of convergence for functions having derivatives of bounded variation. Also we present simultenaous

approximation by new operators in the end of the paper.

1. Introduction

To approximate integrable functions on the interval (0, co),
Srivastava and Gupta [1] introduced a general sequence of
linear positive operators G,, . as follows:

G (f3%) =1 P (x30) j Puseis (6:0) F (1) dt
a 0 &

+ Pao (x50) £(0),
for a function f € H_(0,00), where H,(0,00) (o > 0) is

the class of locally integrable functions defined on (0, co) and
satisfying the growth condition

If®] <Mt* (M>0;a>0;t— 00), )
k
P (50 = S99 (), )

e ™, c=0

(pn,c(x): {(1+CX)_H/C, ceN:={1,2,3,...}. ®)

The general sequence of operators G, . has many inter-
esting properties in approximation theory, which is an
interesting area of research in the present era, and several
researchers have studied these operators; we can mention
some important studies on these operators (see [1-3]). In
[4], author introduced King and Stancu type generalization
of Srivastava-Gupta operators and presented some direct
results. Also, Verma and Agrawal [5] introduced a new
generalization of Srivastava-Gupta operators and studied the
rate of convergence for the functions having the derivatives
of bounded variation (BV). The rate of convergence for the
functions having the derivatives of (BV) is an active area
of research and many researchers studied this direction. We
refer the readers to [6-10] and references therein.

Stancu [11, 12] introduced generalizations of Bernstein
polynomials with one and two parameters (resp.), satisfying
the condition 0 < « < f3, as

sG0=Yr(5)(3) Mo e+ a9 [Ty~ (1 - x +as)

H?;OI (1+as)

0<x<1,



0= 2 () (1) <0 -

©)

for any f e C[0, 1]. Stancu type generalization of approxi-
mation operators present better approach depending on «, 3.
Therefore, this kind of generalizations and their approxima-
tion properties have been studied intensively. We refer the
readers to [13-17] and references therein. Mishra et al. [18,19],
V. N. Mishra, and L. N. Mishra [20] have established very
interesting results on approximation properties of various
functional classes using different types of positive linear
summability operators.

The purpose of this paper is to introduce a new Stancu
type generalization of the operators defined in [5] as

(@p) nl ((nfc) + )T ((nfc) —r +1) S
Gure (/i) = I'((n/c) + 1)T (n/c)

Z Pn+rc,k (x; C)

k=0

© t
XJ pn (r— 1)ck+rl(lL C)f<n +a>dt'
0 +p

(6)
By the definition of operators, it is clear that G;“r/?( f;x) is
positive and linear. For « = 8 = 0, Gﬁfr(’)z (f; x) reduces

to operators defined in [5]. In this study we obtain the rate
of convergence for the functions having the derivatives of
bounded variation. Also, in the end of the paper, we study
the simultaneous approximation.

2. Auxiliary Results

In order to prove our main results, we need the following
lemmas.

Lemma 1. Let the mth order moment be defined as

U (x) = GEP ((t - )" x)

nrm

= (I’l - T‘C) an-f—rc,k (x; C)
k=0

«© nt+ o "
X L Pr-(r-1)cetr-1 (t;0) ( nt B - X> dt,
(7)

where n,m € NU {0}, and then, forn > (m + r + 1)c, we have
the following recurrence relation:

n-(r+m+1)c)(n+B)U,

w1 (%)
=nx (1 + cx) [( ffrﬁm (x)) +mUnrm 1(")]
+ULE, ()
X[m+r+m+re)x)n+ (a—(n+p)x)
X(n—(r+2m+1)c)]
Ut ()
cm(oc—(?H-ﬂ)x)z—mn(“—(”*'ﬁ)x)
X|: n+f ],
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Usf (0 =1,

wp a—(n+B)x n(r+m+re)x)
Unra &)= = 8 TG rDOmep)
U, (x) = el

(n—(r+1)c)(n—(r+2)c) (n+p)’
+< @ N n(r+ n+rc)x) )

n+B x (n—(r+1)c)(n+p)
n(l+r+(n+rc)x)
n-(r+2)c (n+ﬁ)

( o n(r+ (n+rc)x) )
+ —-x+

n+p (n—(r+1)c)(n+ﬁ)2
x (o= (n+p)x)

L (o=t p)x)(e(a—(n+p)x)-—n)
(n- (r+2)c)(n+ﬁ)

(8)
Furthermore, U, fm(x) is polynomial of degree m in x and
Up ()= O ((n+ p) 1), ©)

Proof. By definition of U,‘frﬁm(x), taking the derivative of
U*E (x), we get

nr,m

(U, ()

=—(n-rc) mzanrrc,k (x:¢)
k=0

© nt +a med
X L Pr—r—1)ck+r-1 (5 C)( n+p - X) dt

+ (l’l - TC) Zp:;wc,k (X; C) (10)
k=0

nt+ o m
- dt
+B Q
= —mUyE () + (= 10) Y e (35)

oo nt + o "
X L Pr—(r-1)ck+r-1 (& C)( ntp - X) dt.

)
X J Pu-(r-1)ck+r-1 (t5¢) <
0 n

Hence, using the identity

x (1 +cx) p:mc,k (x50) = (k= (n+7¢) x) Ppyres (X:50)

(11)
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we have

x (1 +¢x) [(U“’ﬁ (x))’ + mUZ’fm_l (x)]

=(n—rc) Y (k= (n+70)X) Pyypes (%:0)
k=0

nt+ o

X L Pn—(r-1)ck+r-1 (t;¢) ( . /3 - X> dt

oo (12)
=(mn-rc) kanwc,k (x5¢)

k=0

nt+ o

X L Po—(r-1)ck+r-1 (t;¢) ( e ﬁ = X> dt

— (n+7c) XU (x)

n,r,m

=1-(n+rc)xU%* (x).

n,r,m

We can write I as

I= |: (n—rc) ZPrHrc,k (x;0)
k=0

X JO k+r—1-(mn—-(r—-1))t] ppir-1)chsr1

+(n—-rc)y(n—(r-1)c) Zinc,k (x;5¢)
k=0 (13)

nt+«o

x JO Pr—(r-1)ck+r-1 (t;c) t< n+p - x) dt

- (T’ - 1) (}’l - T‘C) ZPnJrrc,k (x; C)
k=0

nt+a

X L Pr(r—1)cktr-1 (t C)< "t ﬁ - x> dt:|

To estimate I, using t = ((n+ B)/n)[(((nt + «)/(n+ ) — x) -
((a¢/(n+ B)) — x)], we have

L= (n-(r-1)c)(n+p)
L=

=L+L-(r-DU (x).

n,r,m

n
X |:(Vl —rc) an+rc,k (x50)
k=0

nt + o

(o]
X JO Pu—(r-1)ck+r-1 (t C)( " ﬁ

- <1’lfﬂ - X) (T’l - rC) :Z:(:)pn+rc,k (X; C)

0 nt +« "
x 0 pn—(r—l)c,kﬂ‘—l (t; C) T’l+ﬁ -X dt >

m+1
- x) dt

(- -1)0)(n+p)

I =
2 n

X |:(1’l - T’C) anﬂc,k (x; C)
k=0

0
X ~|-0 Pnf(r—l)c,kﬂ‘—l (t; C) ( "

_x)

_(nfﬁ

X ((7/1 - TC) an+rc,k (x; C)
k=0

nt+ o

o
X JO Pn—(r—l)c,kJrr—l (t; C)

(g
_ (= (r=D)(n+p)
n
<[t - (755%)

Next to estimate I; using the equality

!
t (1 + Ct) pn—(r—l)c,k+r—1 (t; C)

J4)

U~k (x)] .

n,r,m

m+1
- dt
+p x)

(14)

= [(k tr- 1) - (1’1 - (1’ - 1) C) t] pn—(r—l)c,k+r—1 (t; C) >

we have

I =(n-rc) zpﬂ+'fC,k (x5¢)
k=0

nt+«o

o)
!
X t;c)t
jO Pn—(r—l)c,k+r—l( ) (n

+c(n—rc) anﬂ“c,k (xs¢)
k=0

=J1+F

00
l 5 [ nt+
X te)t" | ——
L pn—('f—l)c,k+r—l( ) <7’l

o

+B

B —x)mdt

—x> dt

(15)

(16)



Putting t = ((n+)/n)[((nt+e)/(n+f))—x)—((a/ (n+3))—x)],

we get

X [(” - T’C) an+rc,k (x; C)

k=0

nt+«o

0 m+1
li
X t;c x dt
L pn—(r—l)c,k+r—1 ( )( n+ ﬁ )

_ (nfﬁ - x) (n—rc) ,z)pn”c’k (x;¢)

o0 m
’ nt+«
X JO Pur-1)ck+r-1 (t; C)( nt ﬁ - x) dt:| .

17)

Now integrating by parts, we get

J1=—(m+1)(n-rc zpnﬂ’c,k (x5¢)
k=0

o0 nt+«a "
X 0 Pr(r-1)ck+r-1 (t;0) 7’l+ﬁ -x | dt

" (ﬁ - x> (1’1 - TC) ki:opnﬂc,k (x§ C)

X ro (t; ) <nt T x>m1 dt
0 pn—(r—l)c,k+r—1 > n+ ﬁ

=—-(m+1)

X [ (n—rc) zpn+rc,k (x5¢0)

k=0

© nt + o "
X L Pu—(r-1)ck+r-1 (t;0) ( "t ﬁ - X> dt]
+m ( @ - x>
n+pf

X |:(l’l —rc) an+rc,k (x:¢)

k=0

o0 nt+a ml
x JO Pu—(r-1)ck+r-1 () ( " - x> dt

+p
=—(m+ 1)U (x)

[0 o.f
+m(— -x|U .
m<n+/3 x> -1 )

(18)
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Proceeding in a similar manner, we obtain the estimate 7, as

_c(m+2)(n+ﬁ)

2= Un,r,m+1 (X)
n

2cm+1)(n+B) [ «
+ n <11 N ﬁ - X) Un,r,m (X) (19)

(e Y

- X).
n n+ /3 n,r,m—1 ( )

Combining the equations, we have
n-(r+m+1)c)(n+p) Uf:)’fmﬂ (x)

n,r,m Ng

=nx (1 +cx) [(U“"B (x)), +mU," (x)]

+U% (x)

X[m+r+n+ro)x)n+(a—(n+p)x)
X (n—(r+2m+1)0)] +Uf:r[,;m71 ()

cm(oc—(n+[3)x)2—mn((x—(n+/3)x)
n+f

(20)

which is the desired result.
Moments for m = 0, 1,2 can be easily obtained by using
the above recurrence relation. O

Remark 2. For sufficiently large n, C > 2, and x € (0, 00), it
can be seen from Lemma 1 that

Coff’f (x)

n+p ’ @)

U (x) <

where fo’f(x) = [x(1 + cx) + x(a + Bx + r(1 + cx))] for the
convenient notation.

Remark 3. By using Cauchy-Schwarz inequality, it follows

from Remark 2 that, for sufficiently large n, C > 2, and
x € (0, 00),

(n=7) D Pasrek (x5€)
k=0

nt+o

n+pf

- X

X ~(r-Dck+r-1 (5 € dt
L Pr—r-1)eksr—1 (£6) (22)

, 12 CoF (x)
< [Urf, )] S\]w-
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Lemma 4. Let x € (0,00) and C > 2; then, for sufficiently
large n, we have

An,r (x’ y) = (I’l - T‘C) an+rc,k (x; C)
k=0

y
X J;) pn—(r—l)c,k+r—1 (t; C) dt

- Cx (1 +cx)

< , 0<y<ux,
2
n(x-y)

(23)
1-1,,(x,2)=m~-rc) anﬂc’k (x;¢)

k=0

o)
X j Pn—(r—l)c,k+r—1 (t; C) dt
z

Cx (1 +cx)
<——>°, x<z<oo.
n(z-x)

Proof. We give the proof for only first inequality, and the
other is similar. Using Remark2 with « = = 0, for
sufficiently largenand 0 < y < x and ((nt + @)/(n + f)) < t,
we have

My (%9) = (R =7) D" Py (5)

k=0

y
X «[0 pn—(r—l)c,k+r—1 (t; C) dt
< (n=1€) ) Prarek (%50) (24)
k=0

4 t - x)*
X J Pr—(r-1)ck+r-1 (t;0) (—)2dt
0 (y-=x)

- Cx (1 +cx)

Con(x-y)
O

Lemma 5. Suppose f is s times differentiable on [0, 00) such
that f(sfl)(t) = O(t"), for some integer &« > 0 ast — oo.
Then, for any r, s € Ny, and n > max{a, r + s}, we have

N
DG () = (15 ) Gl () (D7) (29
5T n+ ﬁ 5 5
Proof. Using the identity

p;,k (X) =n [pn+c,k—1 (x’ C) - Pn+c,k (X, C)] . (26)

One can observe that, even in case k = 0, the above identity is
true with the condition p,,,  yegaive(X>€) = 0. Thus, applying
(26), we have

D621 (fix)

_nl'((n/c) + )T ((nfc) —r+1)
- T ((n/c) + 1) T (n/c)

® nt+«
X L Pu—(r-1)ck+r-1 (t C)f( nt ﬁ >dt

_nl'((n/c) + )T ((nfc) —r+1)
- T ((n/c) + 1)T (n/c)

0
Z Dpn+rc,k (X; C)
k=0

00
X Z (1’1 + T’C) [pn+(r+1)c,k—1 (X, C) - pn+(r+1)f>k (X, C)]
k=0

® nt+«a
X L Po—(r-1)ck+r-1 (& C)f< n+ ﬁ >dt

_nm+rco)T((n/c) +r)T ((nfc) —r+1)
- T ((n/c) +1)T (n/c)

[oe)
X an+(r+1)c,k (x,¢)
k=0
[ee]
x L [Pa-tr—vyeksr €)= Pucgr-tycsesr—1 (5€)]
nt + «
)
n+p

_—n(n+rc)T((nfc) +r)T ((nfc) —r+1)
- (n—rc)T((n/c) + 1)T (n/c)

[0
x an+(r+1)c,k (x,¢)

k=0

©« nt+a
X L Dpn—rc,k+r (t> C)f< n+ ﬁ )dt

_ T ((nfo) +r+ DT ((nfe) = 1)
(n+B)T((n/c) + 1)T (n/c)

0
X an+(r+1)c,k (.X, C)
k=0

* nt+«a
X -[0 pn—rc,k+r (t,C) Df< n+ﬁ >dt

) (n:lﬁ) (6P ] (Dfix),

(27)



which means that the identity is satisfied for s = 1. Let us
suppose that the result holds for s = m; that is,

D"Gf (fix)
_(_"n G me o
_<1’l+ﬁ> nr+mc(f )(D f’ )

:<n:,8>m

nl ((n/c)+r+m)T ((nfc)—r—-m+1)
I'((n/c)+1)T (n/c)

0
X an+(r+m)c,k (X; C)

k=0
«© nt+«
X JO P (r+m—1)c,k+r+m—1 (tc)D f<Tﬁ>dt
(28)
Also, from (26) we can write

Dm+1G a,f) (f;x)

n,r,c

=<n:lﬁ>m

y nl' (nfc)+r+m)T((nfc)—r—m+1)
T'((n/c) +1)T (n/c)

0
X Z Dpn+(r+m)c,k (x; C)
k=0

i nt+«a
X JO P (r+m-1)c,k+r+m— l(t C)D f<—>dt

+B
:<n2ﬁ>

nl' (nfc)+r+m)T ((nfc)—r—m+1)
I'((n/c) +1)T (n/c)

0
X Z(n+(r+m)c)
k=0
X [pn+(r+m+l)c,k—1 (.X, C) - Pn+(r+m+1)c,k (X, C)]
0 nt+ o
X L Pn- (r+m—-1)c,k+r+m— l(t C)D f<—>dt

n+f
z(njﬁ>

enl' (nfe)+r+m+ 1T ((nfc)—r-m+1)
I'((n/c) +1)T (n/c)

&)
X an+(r+m+l)c,k (x; C)

k=0

0
x J,() [pn—(r+m—l)c,k+r+m (t; C)

nt+«
- t;c)] D™ dt
pn—(r+m—1)c,k+r+m—1 ( )] f< n+ /3 )
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n m
_<n+ﬁ>
cenl' (nfe)+r+m+1)T((nfc)—r-m+1)
T'((n/c) +1)T (n/c)

0
X an+(r+m+l)c,k (X; C)

k=0

% JOO Dpn—(r+m)c,k+r+m (t;0) Dmf ( nt+ o > dt

0 n—-(r+m-1)c n+pf

(29)
and, integrating by parts the last integral, we have
Dm+1G£;ar ’ ( x)

:(n:l,3>m+l

nl' ((n/c)+r+m+ 1)T ((n/c) —r —m)
I'((n/c)+ 1)T (n/c)

00
X an+(r+m+1)c,k (x; C)

k=0

[e¢]
1 nt+«
X J pn—(r+m)c,k+r+m (t C) D™ f( )dt'
0 +f

(30)
Hence we have
LA n m+1
DG () - ()

nr+m+1c(f )(Dm+1f’x)a

in which the result is true for s = m + 1, and hence by math-
ematical induction the proof of the lemma is completed. [

3. Main Results

Throughout the paper by DB, (0, 00) we denote the class of
absolutely continuous functions f on (0,00) (where g is a
some positive integer) satisfying the conditions:

(i) 1f() <Cjt?and C, > 0,

(ii) the function f has the first derivative on the interval
(0,00) which coincide almost everywhere with a
function which is of bounded variation on every
finite subinterval of (0, c0). It can be observed that
for all functions f € DBq(O, 00) we can have the
representation

f(x)=f(c)+J-x1//(t)dt, xzcz0. (32
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Theorem 6. Let f € DBq(O, 00), g > 0, and x € (0, 00). Then,
for C > 2 and sufficiently large n, we have

CE’
I'((n/c) +r)T ((n/c) —r) nrc (f x) f(x)
C 1 [Vn] x+(x/k) x+(x/vA) ,
( +C)Z V (f())+T \/ (fL )
k=1 x—(x/k) X—(x/ V)

+ % £ 2x) = F (o) = xf (x*) + | f )|
O(n_q)+|f +)|\ij(l+cx)

Jw%mvwrﬂm|vwwfun
+ +
n+pf 2 2

(((x—ﬁx)(n—c(r+1))+2nrcx+nxc+nr)
. (n—(r+1)0) (n+p)
(33)

where C is a constant which may be different on each occur-

rence.

Proof. Using the mean value theorem, we have

(L (/) Gh)
I'((n/c) + )T ((nfc) 1) Grpe (fsx) = f (x)

= (n=7¢) ) Purrek (%50)
k=0

X LOO Pr—(r—1)eksr—1 (£€) [f < e (x> -f (x)] dt

n+f
(nt+a)/(n+p3)

= LOO <J (n—rc) gpnﬂc,k (x50)

X

X Pu—(r-1)c,k+r-1 (£5¢) f, (u) du) dt.

(34)

Also, using the identity

f’ () = M + <f’)x (u)
. M sgn (i - x) (35)
RV IS I
where
1, u=x

Xx (Ll) = {0’ u#x, (36)

we have

(n=7) D Prarex (x:€)
k=0

« LOO <£ [f’ (x) - w] Xx(u)du>

X Pu-(r-1)ck+r—1 (tc)dt = 0.

(37)

Thus, using the above identities, we can write

| (T (nfc))?
T ((n/c) + 1) T ((nfc) - )

<

+

X Pr—(r-1)ck+r-1

L,

2

(rxﬁ

LOO (Jt (n-rc) gpnm,k (x50

(t;¢)

X Pr(r-1yeksr—1 ()

2

4fww'f

Also, it can be verified that

f(x7)

J:O (Jt (n—rc) zpnm,k (%)

X Pn—(r—l)c,kJrr—l (t50)

JLEre)

2

-1

2

[ nr2( )]1/2

ILOO (,E (n—rc) ;2pn+rc‘k (x;¢)

X pn—(r—l)c,k+r—1 (t; C)

LT )

e 1)

2

Uyrq (%)

(fix) - f (x)

(1), (u)] du> dt

LOO ( Lt (n=rc) gpnwc,k (xs5¢)

sgn (u — x)] du) dt|.

sgn (u — x)]du) dt

(38)

(39)

(40)




Combining (38)-(40), we get

(T (n/c))* P
IF((n/c)+r)r((n/C) Gope (fix) = f (x)

IjD<J:fl(u)du>(n__rd

00
X prrrc,k (x; C) pn—(r—l)c,kﬂ’—l (t; C) dt

k=0

[ ([ fwa)a-ro

X anﬂfc,k (X; C) pn—(r—l)c,kJrr—l (t; C) dt (41)

<

k=0
N 'f (x );f (x_)' [Un,r,Z (x)]l/z
AE );f S
[f' (") = £ ()

= [450 (£ + B ()] + :
fE)+f ()
X [Un,r,z (x)]l/z + | 2 |

Upry (x).

Applying Remark 2 and Lemma 1 in above equation, we have

(L (/o)) G
‘F((n/c) )T ((nfc) —7) e (fix) - f ()
e (£0)]+ [B, x>|
\jcfff',’f (x) |f' (") - £ ()|
+
n+f P

e )

2

((a—ﬁx)(n—c(r+1))+2nrcx+nxc+nr)
* (n—(r+ Do) (n+p)
(42)

In order to complete the proof of the theorem, it suffices

to estimate the terms A”‘ﬁ (f.x) and By B(f,x). Applying
Remark 2 with & = f8 = 0, we get

A5 (f)]
[ ([ oo

00
X anJrrc,k (x; C) pn—(r—l)c,kJrr—l (t; C) dt
k=0
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< (7’1 - 1’C) an+rc,k (.X; C)
k=0

x JZ (f (t) - f (‘x))pn—(r—l)c,k+r—1 (t; C) dt

()

X (” - rC) an+rc,k (X; C)
k=0

2x
x J pn—(r—l)c,k+r—1 (t; C) (t - x) dt

X

+

J:x ! (u) du

[1-2,, (x,2x)|

2x
| L@ =2, ol ar

< (n-rc) anm’k (x5¢0)

k=0

[e9)
2
X J Pn—(r—l)c,k+r—1 (t; C) Clt dr

2x

+ |f (:C)| (l’l - TC) zpn+rc,k (X; C)
X k=0

X «[0 pn—(r—l)c,k+r—1 (t; C) (t - -x)2 dt
+ |f’ (X+)| (Yl - rc) an+rc,k (x; C)
k=0

&)
x Jz pn—(r—l)c,kJrr—l (t; C) |t - X| dt
X

+M|f(2x)_

nx?

- xf' (x")|
[Vn] x+(x/k)

1+cx)z \x/ (f (x))

x+(x//n)

¥ % \V (fl).

X

(43)

For estimating the integral

—TC) ZP”+TC}C (x C)J- pn (r—1)c,k+r— l(t C)C tzth

(44)



Journal of Function Spaces

we proceed as follows: since ¢ > 2x implies that < 2(f — x)
so by Schwarz inequality and Lemma 1,

(1’1 - T’C) anﬂ*ck (x C) J pn (r—-1)c,k+r-1 (t C)C tzth

(o)
<C 21 (n-rc) anwc,k (x;¢)
k=0

S
8 L Pr-r-1)cesr-1 (t0)Cy (t - x)Zq dt

<C;2U

nr2q (%) as 1 — 00.

=0 (n™)
(45)

By using Holder’s inequality and Remark 2 (¢ = 8 = 0), we
get the estimate as follows:

|fl (X+)| (ﬂ - T‘C) an+rc,k (x; C)
k=0

0
x J Pu—(r-1)ck+r-1 (t;c) [t — x| dt
2x
<[ )]

X ((” - TC) an+rc,k (X; C)
k=0

1/2

X J() pn—(r—l)c,k+r—1 (t; C) (t - x)Z dt)

| )|\/Cx(l+cx)

(46)
Collecting the estimates from (43)-(46), we obtain

lAi’f (f,X)| <o)+ |f' (x+)|

y \/Cx(1+cx) +C(1+cx)
n nx

x |f@x) = f ()= xf' (x") + | f ()|

[Vr] x+(x/k)

SOy TV ()

x+(x//n)

+ % \/ (flw).

X

(47)

On the other hand, to estimate Bzf (f,x) by applying
Lemma 4 with y = x — (x/+/n) and integration by parts, we
have

|BYE (f, )|
x rt
_ L L Flwd,, (x t)‘

- <Ly ! J:) | ®] L, (0] dt
< M joy\t/((f')x) (x_lt)zdt
V)

_ Cx(1+cx) JW x
-

(x=(x/u)
X

+ f'
=V
[Va]  x

(),

k=1 x—(x/k)

(().)

< Cx (1 +cx)
n

X
X
+ p—
Y
X/ V)
(48)

where u = (x/(x — t)).
Combining (41), (47), and (48), we get the desired result.
O

Corollary 7. Let f(s) € DBq(O, 00), g > 0, and x € (0,00).
Then, for C > 2 and n sufficiently large, one has

(I (n/c))’ <”+ﬁ>s
I'((n/c) +r)T ((n/c) —r) n

x D’G@P) (fix)- f (%)

n,r,c

C(l )[\/ﬁ] x+(x/k)
VANl

Ds+1f)x)

k=1 x—(x/k)

x S C(1+cx)
R Ds+1 el S
V) S

x |f @x) = (x) - xD™ f (x*) + | f ()|

Cx (1 +cx)
n

+O0(n)+ |D5“f (x+)| \j
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Copf (x) [P f (x7) - D' f ()|
n+f 2

|Ds+1f(x+) + Ds+1f(x—)'
" 2

<(oc—ﬁx)(n—c(r+1))+2nrcx+nxc+nr)
§ (n—(r+1)0) (n+f) ’

(49)

where \/2 f, denotes the total variation of f, on [a,b] and the
auxiliary function D**' f,_is defined by

D' ft)-D f(x7), 0<t<x
D™ f (1) = 0, t=x (50)
D () -D f(xY), x<t<oo.

4. Conclusion

The results of our lemmas and theorems are more general
rather than the results of any other previously proved lemmas
and theorems, which will enrich the literature of applications
of quantum calculus in operator theory and convergence
estimates in the theory of approximations by positive linear
operators. The researchers and professionals working or
intend to work in areas of mathematical analysis and its
applications will find this research paper to be quite useful.
Consequently, the results so established may be found useful
in several interesting situations appearing in the literature on
mathematical analysis, pure and applied mathematics, and
mathematical physics. Some interesting applications of the
positive approximation linear operators can be seen in [21-
24].
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