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ON TIMELIKE BERTRAND CURVES IN MINKOWSKI

3-SPACE

Ali Uçum∗ and Kazım İlarslan

Abstract. In this paper, we study the timelike Bertrand curves in
Minkowski 3-space. Since the principal normal vector of a timelike
curve is spacelike, the Bertrand mate curve of this curve can be a
timelike curve, a spacelike curve with spacelike principal normal or
a Cartan null curve, respectively. Thus, by considering these three
cases, we get the necessary and sufficient conditions for a timelike
curve to be a Bertrand curve. Also we give the related examples.

1. Introduction

A classical problem in Differential Geometry raised by Saint-Venant
in 1845([14]) led to discovery of Bertrand curves in 1850 ([3]). A Bertrand
curve is a curve in the Euclidean space such that its principal normal is
the principal normal of the second curve. J. Bertrand proved that a nec-
essary and sufficient condition for the existence of such a second curve
is required in fact a linear relationship calculated with constant coeffi-
cients should exist between the first and second curvatures of the given
original curve. In other words, if we denote first and second curvatures
of a given curve by k1 and k2 respectively, we have λk1 + µk2 = 1, λ, µ
∈ R. Since 1850, after the paper of Bertrand, the pairs of curves like
this have been called Conjugate Bertrand Curves, or more commonly
Bertrand Curves (see [8]).

The study of this kind of curves has been extended to many other
ambient spaces. In [10], Pears studied this problem for curves in the
n-dimensional Euclidean space En, n > 3, and showed that a Bertrand
curve in En must belong to a three-dimensional subspace E3 ⊂ En. This
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result is restated by Matsuda and Yorozu [9]. They proved that there was
not any special Bertrand curves in En (n > 3) and defined a new kind,
which is called (1, 3)-type Bertrand curves in 4-dimensional Euclidean
space. Bertrand curves and their characterizations were studied by many
researchers in Minkowski 3-space and Minkowski space-time (see [1], [2],
[6], [7], [11]) as well as in Euclidean space. In addition, in [12] and
[13], the authors studied (1, 3)-type Bertrand curves in semi-Euclidean
4-space with index 2.

In the present paper, we study the timelike Bertrand curves in Minkowski
3-space. Since the principal normal vector of a timelike curve is space-
like, the Bertrand mate curve of this curve can be a timelike curve, a
spacelike curve with spacelike principal normal or a Cartan null curve,
respectively. Thus, by considering these three cases, we get the neces-
sary and sufficient conditions for a timelike curve to be a Bertrand curve.
Also we give the related examples.

2. Preliminaries

The Minkowski space E3
1 is the 3-dimensional real vector space R3

equipped with the indefinite flat metric given by

g = −dx21 + dx22 + dx23,

where (x1, x2, x3) is a rectangular coordinate system of R3. Recall that a
vector v ∈ E3

1\{0} can be spacelike if g(v, v) > 0 , timelike if g(v, v) < 0
and null (lightlike) if g(v, v) = 0 and v 6= 0. In particular, the vector

v = 0 is spacelike. The norm of a vector v is given by ||v|| =
√
|g(v, v)|,

and two vectors v and w are said to be orthogonal, if g(v, w) = 0.
An arbitrary curve α(s) in E3

1, can locally be spacelike, timelike or null
(lightlike), if all its velocity vectors α′(s) are respectively spacelike, time-
like or null ([8]). A spacelike curve in E3

1 is called pseudo null curve if its
principal normal vector N is null [4]. A null curve α is said to be param-
eterized by pseudo-arc s if g(α′′(s), α′′(s)) = 1. A spacelike or a timelike
curve α is said to be parameterized by arc-length s if g(α′(s), α′(s)) = ±1
([4]).

Let {T,N,B} be the moving Frenet frame along a curve α in E3
1,

consisting of the tangent, the principal normal and the binormal vector
fields, respectively. Depending on the causal character of α, the Frenet
equations have the following forms.
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Case I. If α is a non-null curve, the Frenet equations are given by
([8]):

(1)




T ′
N ′
B′


 =




0 ε2k1 0
−ε1k1 0 ε3k2

0 −ε2k2 0






T
N
B


 ,

where k1 and k2 are the first and the second curvature of the curve
respectively. Moreover, the following conditions hold:

g(T, T ) = ε1 = ±1, g(N,N) = ε2 = ±1, g(B,B) = ε3 = ±1

and

g(T,N) = g(T,B) = g(N,B) = 0.

Case II. If α is a null curve, the Frenet equations are given by ([4])

(2)




T ′
N ′
B′


 =




0 k1 0
k2 0 −k1
0 −k2 0






T
N
B


 ,

where the first curvature k1 = 0 if α is straight line, or k1 = 1 in all
other cases. In particular, the following conditions hold:

g(T, T ) = g(B,B) = g(T,N) = g(N,B) = 0, g(N,N) = g(T,B) = 1.

Case III. If α is a pseudo null curve, the Frenet formulas have the
form ([5])

(3)




T ′
N ′
B′


 =




0 k1 0
0 k2 0

−k1 0 −k2






T
N
B


 ,

where the first curvature k1 = 0 if α is straight line, or k1 = 1 in all
other cases. In particular, the following conditions hold:

g(N,N) = g(B,B) = g(T,N) = g(T,B) = 0, g(T, T ) = g(N,B) = 1.

3. Timelike Bertrand curves in Minkowski 3-space E3
1

In this section, we consider the timelike Bertrand curves in E3
1. We

get the necessary and sufficient conditions for the timelike curves to be
Bertrand curves in E3

1 and we also give the related examples.
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Definition 3.1. A timelike curve α : I → E3
1 with κ1(s) 6= 0 is a

Bertrand curve if there is a curve α∗ : I∗ → E3
1 such that the principal

normal vectors of α(s) and α∗(s∗) at s ∈ I, s∗ ∈ I∗ are equal. In this
case, α∗(s∗) is called the Bertrand mate of α(s).

Let β : I → E3
1 be a timelike Bertrand curve in E3

1 with the Frenet
frame {T,N,B} and the curvatures κ1, κ2, and β∗ : I → E3

1 be a
Bertrand mate curve of β with the Frenet frame {T ∗, N∗, B∗} and the
curvatures κ∗1, κ

∗
2.

Theorem 3.2. Let β : I ⊂ R → E3
1 be a unit speed timelike curve

with the non-zero curvatures κ1, κ2. Then the curve β is a Bertrand
curve with Bertrand mate β∗ if and only if one of the following conditions
holds:
(i) there exist constant real numbers λ and h satisfying

(4) h2 > 1, 1 + λκ1 = hλκ2, hκ1 − κ2 6= 0, hκ2 − κ1 6= 0.

In this case, β∗ is a timelike curve in E3
1.

(ii) there exist constant real numbers λ and h satisfying

(5) h2 < 1, 1 + λκ1 = hλκ2, hκ1 − κ2 6= 0, hκ2 − κ1 6= 0.

In this case, β∗ is a spacelike curve with spacelike principal normal in
E3
1.

Proof. Assume that β is a timelike Bertrand curve parametrized by
arc-length s with non-zero curvatures κ1, κ2 and the curve β∗ is the
Bertrand mate curve of the curve β parametrized by with arc-length or
pseudo arc s∗.

(i) Let β∗ be a timelike curve. The proof of this case can be similarly
done to the theorem in [15].

(ii) Let β∗ be a spacelike curve with spacelike principal normal. Then,
we can write the curve β∗ as

(6) β∗(s∗) = β∗(f(s)) = β(s) + λ(s)N(s)

for all s ∈ I where λ(s) is C∞−function on I. Differentiating (6) with
respect to s and using (1), we get

(7) T ∗f ′ = (1 + λκ1)T + λ′N + λκ2B.

By taking the scalar product of (7) with N , we have

(8) λ′ = 0.
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Substituting (8) in (7), we find

(9) T ∗f ′ = (1 + λκ1)T + λκ2B.

By taking the scalar product of (9) with itself, we obtain

(10)
(
f ′)2 = −(1 + λκ1)

2 + (λκ2)
2 .

If we denote

(11) δ =
1 + λκ1

f ′ and γ =
λκ2
f ′ ,

we get

(12) T ∗ = δT + γB1.

Differentiating (12) with respect to s and using (1), we find

(13) f ′κ∗1N
∗ = δ′T + (δκ1 − γκ2)N + γ′B.

By taking the scalar product of (13) with itself, we get

(14) δ′ = 0 and γ′ = 0.

Since γ 6= 0, we have 1 + λκ1 = hλκ2 where h = δ/γ. Substituting (14)
in (13) , we find

(15) f ′κ∗1N
∗ = (δκ1 − γκ2)N

By taking the scalar product of (15) with itself, using (10) and (11), we
have

(16)
(
f ′)2 (κ∗1)2 =

(hκ1 − κ2)
2

1− h2

where hκ1−κ2 6= 0 and h2 < 1. If we put v = (δκ1 − γκ2) /f
′κ∗1, we get

(17) N∗ = vN .

Differentiating (17) with respect to s and using (1), we find

(18) −f ′κ∗2B
∗ = vκ1T + vκ2B + f ′κ∗1T

∗

where v′ = 0. Rewriting (18) by using (9) , we get

(19) −f ′κ∗2B
∗ = P (s)T +Q (s)B

where

P (s) =
λκ2 (hκ1 − κ2)

(f ′)2κ∗1 (1− h2)
(κ1 − hκ2) ,

Q (s) =
λκ2 (hκ1 − κ2)h

(f ′)2κ∗1 (1− h2)
(κ1 − hκ2)

which implies that hκ2 − κ1 6= 0.
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Conversely, assume that β is a timelike curve parametrized by arc-
length s with non-zero curvatures κ1, κ2, and the conditions of (4) hold
for constant real numbers λ and h. Then, we can define a curve β∗ as

(20) β∗(s∗) = β(s) + λN(s).

Differentiating (20) with respect to s and using (1), we find

(21)
dβ∗

ds
= λκ2 (hT +B)

which leads to that

(22) f ′ =

√∣∣∣∣g
(
dβ∗

ds
,
dβ∗

ds

)∣∣∣∣ = m1λκ2
√
1− h2

where m1 = ±1 such that m1λκ2 > 0. Rewriting (21) , we obtain

(23) T ∗ =
m1√
1− h2

(hT +B) , g (T ∗, T ∗) = 1.

Differentiating (23) with respect to s and using (1), we get

(24)
dT ∗

ds∗
=

m1 (hκ1 − κ2)

f ′√1− h2
N

which causes that

(25) κ∗1 =
∥∥∥∥
dT ∗

ds∗

∥∥∥∥ =
m2 (hκ1 − κ2)

f ′√1− h2

where m2 = ±1 such that m2 (hκ1 − κ2) > 0. Now, we can find N∗ as

(26) N∗ = m1m2N , g (N∗, N∗) = 1.

Differentiating (26) with respect to s, using (23) and (24), we get

(27)
dN∗

ds∗
+ κ∗1T

∗ =
m1m2 (κ1 − hκ2)

f ′ (1− h2)
(T + hB)

which bring about that

κ∗2 =
m3 (κ1 − hκ2)

f ′√1− h2
,

where m3 = ±1 such that m3 (κ1 − hκ2) > 0. Lastly, we define B∗ as

B∗ =
m1m2m3√

1− h2
(T + hB) , g (B∗, B∗) = −1.

Then β∗ is a spacelike curve with spacelike principal normal and the
Bertrand mate curve of β. Thus β is a Bertrand curve.
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Theorem 3.3. Let β : I ⊂ R → E3
1 be a unit speed timelike curve

with the non-zero curvatures κ1, κ2 and β∗ : I ⊂ R → E3
1 be a Cartan

null curve with curvatures κ∗1 = 1, κ∗2. If the curve β∗ is a Bertrand
mate curve of the curve β, then there exist constant real numbers λ and
h = ±1 satisfying 1 + λκ1 = hλκ2 and hκ1 − κ2 6= 0.

Proof. Assume that β is a timelike Bertrand curve parametrized by
arc-length s with non-zero curvatures κ1, κ2 and the curve β∗ is the
Cartan null Bertrand mate curve of the curve β parametrized by with
pseudo arc s∗ with curvatures κ∗1 = 1, κ∗2. Then, we can write the curve
β∗ as

(28) β∗(s∗) = β∗(f(s)) = β(s) + λ(s)N(s)

for all s ∈ I where λ(s) is C∞−function on I. Using (1) and (2), differ-
entiating (28) with respect to s, we get

(29) T ∗f ′ = (1 + λκ1)T + λ′N + λκ2B.

By taking the scalar product of (29) with N , we have

(30) λ′ = 0.

Substituting (30) in (29), we find

(31) T ∗f ′ = (1 + λκ1)T + λκ2B.

By taking the scalar product of (9) with itself, we obtain

(32) (1 + λκ1)
2 = (λκ2)

2

which implies that 1 + λκ1 = hλκ2 where h = ±1. Rewriting (31) by
using (32) , we get

(33) T ∗f ′ = λκ2(hT +B).

Putting v = λκ2/f
′ and differentiating (33) with respect to s by using

(1), we find

(34) f ′N∗ = a (hκ1 − κ2)N

which means that hκ1 − κ2 6= 0.

Theorem 3.4. Let β : I ⊂ R → E3
1 be a unit speed timelike curve

with non-zero constant curvatures κ1, κ2 and β∗ : I ⊂ R → E3
1 be a

Cartan null curve with curvatures κ∗1 = 1, κ∗2. Then the curve β∗ is a
Bertrand mate curve of the curve β if and only if there exist constant
real numbers λ and h = ±1 satisfying 1+λκ1 = hλκ2 and hκ1−κ2 6= 0.
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Proof. Assume that β is a timelike Bertrand curve parametrized by
arc-length s with non-zero constant curvatures κ1, κ2 and the curve β∗
is the Cartan null Bertrand mate curve of the curve β parametrized
by with pseudo arc s∗ with curvatures κ∗1 = 1, κ∗2. Then from above
theorem, there exist constant real numbers λ and h = ±1 satisfying
1 + λκ1 = hλκ2 and hκ1 − κ2 6= 0.

Conversely, assume that β is a timelike curve parametrized by arc-
length s with non-zero constant curvatures κ1, κ2 and there exist con-
stant real numbers λ and h = ±1 satisfying 1 + λκ1 = hλκ2 and
hκ1 − κ2 6= 0. Then, we can define a curve β∗ as

(35) β∗(s∗) = β(s) + λN(s).

Differentiating (35) with respect to s and using (1), we find

(36)
dβ∗

ds
= λκ2 (hT +B) .

Differentiating (35) with respect to s and using (1), we find

(37)
d2β∗

ds2
= λκ2 (hκ1 − κ2)N

which leads to that

(38) f ′ =
(∣∣∣∣g

(
dβ∗

ds
,
dβ∗

ds

)∣∣∣∣
)1/4

=
√

m1λκ2 (hκ1 − κ2)

where m1 = ±1 such that m1λκ2 (hκ1 − κ2) > 0. Rewriting (36) and
(37) , we obtain

T ∗ =
λκ2√

m1λκ2 (hκ1 − κ2)
(hT +B) , g (T ∗, T ∗) = 0,(39)

N∗ = m1N, g (N∗, N∗) = 1 and κ∗1 = 1.(40)

We know that κ∗2 = −1
2g

(
dN∗
ds∗ ,

dN∗
ds∗

)
. Thus we have

(41) κ∗2 =
κ21 − κ22

2m1λκ2 (hκ1 − κ2)
.

Lastly, we can define B∗ as

B∗ = κ∗2T
∗−dN∗

ds∗
=

−λκ2h (hκ1 − κ2)
2

2 (m1λκ2 (hκ1 − κ2))
3/2

(T − hB) , g (B∗, B∗) = 0.

Then β∗ is a Cartan null curve and the Bertrand mate curve of β. Thus
β is a Bertrand curve.
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Example 1. Let us consider a timelike curve in E3
1 with the equation

β(s) =
(√

2 sinh s,
√
2 cosh s, s

)

with the Frenet Frame

T (s) =
(√

2 cosh s,
√
2 sinh s, 1

)
,

N (s) = (sinh s, cosh s, 0) ,

B1 (s) =
(
cosh s, sinh s,

√
2
)

and the curvatures κ1 (s) =
√
2 and κ2 (s) = −1. If we take h =

√
2 and

λ = −1/2
√
2 in (i) of theorem 3.2, then we get the curve β∗ as follows:

β∗ (s) = β (s)− 1

2
√
2
N (s) =

(
3

2
√
2
sinh s,

3

2
√
2
cosh s, s

)

By straight calculations, we get

T ∗(s) =
(
3 cosh s, 3 sinh s, 2

√
2
)
,

N∗ (s) = (sinh s, cosh s, 0) ,

B∗ (s) =
(
2
√
2 cosh s, 2

√
2 sinh s, 3

)

and κ∗1 (s) = 6
√
2, κ∗2 (s) = −8. It can be easily seen that the curve β∗

is a timelike Bertrand mate curve of the curve β.

Example 2. For the same timelike curve β in Example 1, if we take
h =

√
2/2 and λ = −√

2/3 in (ii) of theorem 3.2, then we get the curve
β∗ as follows:

β∗ (s) = β (s)−
√
2

3
N (s) =

(
2
√
2

3
sinh s,

2
√
2

3
cosh s, s

)

By straight calculations, we get

T ∗(s) =
(
2
√
2 cosh s, 2

√
2 sinh s, 3

)
,

N∗ (s) = (sinh s, cosh s, 0) ,

B∗ (s) =
(
3 cosh s, 3 sinh s, 2

√
2
)

and κ∗1 (s) = 6
√
2, κ∗2 (s) = −9. It can be easily seen that the curve β∗

is a spacelike Bertrand mate curve of the curve β.
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Example 3. For the same timelike curve β in Example 1, if we take
λ = 1−√

2 in theorem 3.4, then we get the curve β∗ as follows:

β∗ (s) = β (s) +
(
1−

√
2
)
N (s) = (sinh s, cosh s, s)

By straight calculations, we get

T ∗(s) = (cosh s, sinh s, 1) ,

N∗ (s) = (sinh s, cosh s, 0) ,

B∗ (s) =
(
−cosh s

2
,−sinh s

2
,
1

2

)

and κ∗1 (s) = 1, κ∗2 (s) = 1/2. It can be easily seen that the curve β∗ is a
Cartan null Bertrand mate curve of the curve β.
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