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We provide sufficient conditions for the existence of a unique common fixed point for a pair of mappings 𝑇, 𝑆 : 𝑋 → 𝑋, where
𝑋 is a nonempty set endowed with a certain metric. Moreover, a numerical algorithm is presented in order to approximate such
solution. Our approach is different to the usual used methods in the literature.

1. Introduction and Problem Formulation

Let (𝑋, 𝑑) be a complete metric space and 𝑇, 𝑆 : 𝑋 → 𝑋 be
two given operators. In this paper, we are interested on the
problem:

Find 𝑥 ∈ 𝑋 such that

𝑥 = 𝑇𝑥,
𝑥 = 𝑆𝑥.

(1)

We provide sufficient conditions for the existence of one and
only one solution to (1). Moreover, we present a numeri-
cal algorithm in order to approximate such solution. Our
approach is different to the existing methods in the literature.

System (1) arises in the study of different problems from
nonlinear analysis. For example, when we deal with the
solvability of a system of integral equations, such problem can
be formulated as a common fixed point problem for a pair of
self-mappings𝑇, 𝑆 : 𝑋 → 𝑋, where𝑇 and 𝑆 are two operators
that depend on the considered problem. For some examples
in this direction, we refer to [1–5] and references therein.

The most used techniques for the solvability of problem
(1) are based on a compatibility condition introduced by

Jungck [6]. Such techniques are interesting and can be
useful for the solvability of certain problems (see [6–9] and
references therein). However, two major difficulties arise in
the use of such approach. At first, the compatibility condition
is not always satisfied, and in some cases it is not easy to check
such condition. Moreover, the numerical approximation of
the common fixed point is constructed via the axiom of
choice using certain inclusions, which makes its numerical
implementation difficult.

In this paper, problem (1) is investigated under the
following assumptions.

Assumption (A1). We suppose that 𝑋 is equipped with a
partial order ⪯. Recall that ⪯ is a partial order on 𝑋 if it
satisfies the following conditions:

(i) 𝑥 ⪯ 𝑥, for every 𝑥 ∈ 𝑋.
(ii) 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑧 imply that 𝑥 ⪯ 𝑧, for every (𝑥, 𝑦, 𝑧) ∈

𝑋 × 𝑋 × 𝑋.
(iii) 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑥 imply that 𝑥 = 𝑦, for every (𝑥, 𝑦) ∈

𝑋 × 𝑋.
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Assumption (A2). The operator 𝑆 : 𝑋 → 𝑋 is level closed
from the left; that is, the set

lev 𝑆⪯ = {𝑥 ∈ 𝑋 : 𝑥 ⪯ 𝑆𝑥} (2)

is nonempty and closed.
In order to make the lecture for the reader easy, let us give

an example.

Example 1. Let 𝑋 = 𝐶([0, 1];R) be the set of real valued and
continuous functions on [0, 1]. We consider the metric 𝑑 on
𝑋 defined by

𝑑 (𝑥, 𝑦) = max {󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 : 𝑡 ∈ [0, 1]} ,
(𝑥, 𝑦) ∈ 𝑋 × 𝑋. (3)

We endow𝑋 with the partial order ⪯ given by

(𝑥, 𝑦) ∈ 𝑋 × 𝑋, 𝑥 ⪯ 𝑦 ⇐⇒ 𝑥 (𝑡) ≤ 𝑦 (𝑡) , 𝑡 ∈ [0, 1] . (4)

Next, define the operator 𝑆 : 𝑋 → 𝑋 by

(𝑆𝑥) (𝑡) = ∫𝑡
0
𝑥 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] . (5)

Clearly, 𝑆 : 𝑋 → 𝑋 is well-defined. Now, consider the set

lev 𝑆⪯ = {𝑥 ∈ 𝑋 : 𝑥 ⪯ 𝑆𝑥} , (6)

that is,

lev 𝑆⪯ = {𝑥 ∈ 𝑋 : 𝑥 (𝑡) ≤ ∫𝑡
0
𝑥 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1]} . (7)

Let {𝑥𝑛} ⊂ lev 𝑆⪯ be a sequence that converges to some 𝑥 ∈ 𝑋
(with respect to 𝑑); that is,

𝑥𝑛 (𝑡) ≤ ∫
𝑡

0
𝑥𝑛 (𝑠) 𝑑𝑠, ∀𝑡 ∈ [0, 1] , ∀𝑛,

𝑑 (𝑥𝑛, 𝑥) 󳨀→ 0 as 𝑛 󳨀→ ∞.
(8)

Since the uniform convergence implies the point-wise con-
vergence, for all 𝑡 ∈ [0, 1], we have

lim
𝑛→∞

𝑥𝑛 (𝑡) = 𝑥 (𝑡) . (9)

Moreover, for all 𝑡 ∈ [0, 1],
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0
𝑥𝑛 (𝑠) 𝑑𝑠 − ∫

𝑡

0
𝑥 (𝑠) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ ∫

𝑡

0
𝑑 (𝑥𝑛, 𝑥) 𝑑𝑠 ≤ 𝑑 (𝑥𝑛, 𝑥)

󳨀→ 0 as 𝑛 󳨀→ ∞.
(10)

Therefore,

𝑥 (𝑡) ≤ ∫𝑡
0
𝑥 (𝑠) 𝑑𝑠, ∀𝑡 ∈ [0, 1] , (11)

which proves that 𝑆 : 𝑋 → 𝑋 is level closed from the left.

Remark 2. Note that the fact that 𝑆 : 𝑋 → 𝑋 is level closed
from the left does not imply that

lev 𝑆⪰ = {𝑥 ∈ 𝑋 : 𝑥 ⪰ 𝑆𝑥} (12)

is closed. Several counterexamples can be obtained.We invite
the reader to check this fact by himself.

Assumption (A3). For every 𝑥 ∈ 𝑋, we have
𝑥 ⪯ 𝑆𝑥 󳨐⇒ 𝑇𝑥 ⪰ 𝑆𝑇𝑥,
𝑥 ⪰ 𝑆𝑥 󳨐⇒ 𝑇𝑥 ⪯ 𝑆𝑇𝑥. (13)

In order to fix our next assumption, we need to introduce
the following class of mappings. We denote by Ψ the set of
functions 𝜓 : [0,∞) → [0,∞) satisfying the conditions:
(Ψ1) 𝜓 is nondecreasing.
(Ψ2) For all 𝑡 > 0, we have

𝜇0 (𝑡) fl
∞

∑
𝑘=0

𝜓𝑘 (𝑡) < ∞. (14)

Here, 𝜓𝑘 is the 𝑘th iterate of 𝜓. Any function 𝜓 ∈ Ψ is said to
be a (c)-comparison function.

We have the following properties of (c)-comparison
functions.

Lemma 3 (see [10]). Let 𝜓 ∈ Ψ. Then

(i) 𝜓(𝑡) < 𝑡, for all 𝑡 > 0,
(ii) 𝜓(0) = 0,
(iii) 𝜓 is continuous at 𝑡 = 0,
(iv) 𝜇0 is nondecreasing and continuous at 0.
Our next assumption is the following.

Assumption (A4).There exists a function 𝜓 ∈ Ψ such that, for
every (𝑥, 𝑦) ∈ 𝑋 × 𝑋, we have

𝑥 ⪯ 𝑆𝑥,
𝑦 ⪰ 𝑆𝑦 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) . (15)

Now, we are ready to state and prove our main result.

2. A Common Fixed Point
Result and Approximations

Our main result is given by the following theorem.

Theorem 4. Suppose that Assumptions (A1)–(A4) are satis-
fied. Then

(i) for any 𝑥0 ∈ 𝑙𝑒V 𝑆⪯, the Picard sequence {𝑇𝑛𝑥0}
converges to some 𝑥∗ ∈ 𝑋, which is a solution to (1),

(ii) 𝑥∗ ∈ 𝑋 is the unique solution to (1),
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(iii) the following estimates

𝑑 (𝑇𝑛𝑥0, 𝑥∗) ≤ 𝜇𝑛 (𝑑 (𝑇𝑥0, 𝑥0)) , 𝑛 = 0, 1, 2, . . . , (16)

𝑑 (𝑇𝑛𝑥0, 𝑥∗) ≤ 𝜇1 (𝑑 (𝑇𝑛−1𝑥0, 𝑇𝑛𝑥0)) ,
𝑛 = 1, 2, 3, . . .

(17)

hold, where

𝜇𝑛 (𝑡) =
∞

∑
𝑘=𝑛

𝜓𝑘 (𝑡) , 𝑡 ≥ 0, 𝑛 = 0, 1, 2, . . . . (18)

Proof. Let 𝑥0 be an arbitrary element of lev 𝑆⪯; that is,
𝑥0 ∈ 𝑋,
𝑥0 ⪯ 𝑆𝑥0.

(19)

Such an element exists from Assumption (A2). From
Assumption (A3), we have

𝑥1 ⪰ 𝑆𝑥1, (20)

where 𝑥1 = 𝑇𝑥0. Again, from Assumption (A3), we have

𝑥2 ⪯ 𝑆𝑥2, (21)

where 𝑥2 = 𝑇𝑥1. Now, let us consider the Picard sequence
{𝑥𝑛} ⊂ 𝑋 defined by

𝑥𝑛+1 = 𝑇𝑥𝑛, 𝑛 = 0, 1, 2, . . . . (22)

Proceeding as above, by induction we get

𝑥2𝑛 ⪯ 𝑆𝑥2𝑛,
𝑥2𝑛+1 ⪰ 𝑆𝑥2𝑛+1,

𝑛 = 0, 1, 2, . . . .
(23)

Therefore, by Assumption (A4), we have

𝑑 (𝑇𝑥2𝑛, 𝑇𝑥2𝑛+1) ≤ 𝜓 (𝑑 (𝑥2𝑛, 𝑥2𝑛+1)) ,
𝑛 = 0, 1, 2, . . . . (24)

Again, by Assumption (A4), we have

𝑑 (𝑇𝑥2𝑛+1, 𝑇𝑥2𝑛+2) ≤ 𝜓 (𝑑 (𝑥2𝑛+1, 𝑥2𝑛+2)) ,
𝑛 = 0, 1, 2, . . . . (25)

As a consequence, we have

𝑑 (𝑥𝑛+1, 𝑥𝑛) ≤ 𝜓 (𝑑 (𝑥𝑛, 𝑥𝑛−1)) , 𝑛 = 1, 2, 3, . . . . (26)

From (26), since 𝜓 is a nondecreasing function, for every 𝑛 =
1, 2, 3, . . ., we have
𝑑 (𝑥𝑛+1, 𝑥𝑛) ≤ 𝜓 (𝑑 (𝑥𝑛, 𝑥𝑛−1)) ≤ 𝜓2 (𝑑 (𝑥𝑛−1, 𝑥𝑛−2))

≤ ⋅ ⋅ ⋅ ≤ 𝜓𝑛 (𝑑 (𝑥1, 𝑥0)) .
(27)

Suppose that

𝑑 (𝑥1, 𝑥0) = 0. (28)

In this case, from (23), we have

𝑥0 = 𝑥1 = 𝑇𝑥0,
𝑥0 ⪯ 𝑆𝑥0,
𝑥0 = 𝑥1 ⪰ 𝑆𝑥1 = 𝑆𝑥0.

(29)

Since ⪯ is a partial order, this proves that 𝑥0 ∈ 𝑋 is a solution
to (1). Now, we may suppose that 𝑑(𝑥1, 𝑥0) ̸= 0. Let

𝛿 = 𝑑 (𝑥1, 𝑥0) > 0. (30)

From (27), we have

𝑑 (𝑥𝑛+1, 𝑥𝑛) ≤ 𝜓𝑛 (𝛿) , 𝑛 = 0, 1, 2, . . . . (31)

Using the triangle inequality and (31), for all 𝑚 = 1, 2, 3, . . .,
we have

𝑑 (𝑥𝑛, 𝑥𝑛+𝑚) ≤ 𝑑 (𝑥𝑛, 𝑥𝑛+1) + 𝑑 (𝑥𝑛+1, 𝑥𝑛+2) + ⋅ ⋅ ⋅
+ 𝑑 (𝑥𝑛+𝑚−1, 𝑥𝑛+𝑚)

≤ 𝜓𝑛 (𝛿) + 𝜓𝑛+1 (𝛿) + ⋅ ⋅ ⋅ + 𝜓𝑛+𝑚−1 (𝛿)

=
𝑛+𝑚−1

∑
𝑖=𝑛

𝜓𝑖 (𝛿) ≤
∞

∑
𝑖=𝑛

𝜓𝑖 (𝛿) .

(32)

On the other hand, since ∑∞𝑘=0 𝜓𝑘(𝛿) < ∞, we have

∞

∑
𝑖=𝑛

𝜓𝑖 (𝛿) 󳨀→ 0 as 𝑛 → ∞, (33)

which implies that {𝑥𝑛} = {𝑇𝑛𝑥0} is a Cauchy sequence in
(𝑋, 𝑑). Then there is some 𝑥∗ ∈ 𝑋 such that

lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑥∗) = 0. (34)

On the other hand, from (23), we have

𝑥2𝑛 ∈ lev 𝑆⪯, 𝑛 = 0, 1, 2, . . . . (35)

Since 𝑆 : 𝑋 → 𝑋 is level closed from the left (from
Assumption (A2)), passing to the limit as 𝑛 → ∞ and using
(34), we obtain

𝑥∗ ∈ lev 𝑆⪯, (36)

that is,

𝑥∗ ⪯ 𝑆𝑥∗. (37)

Now, using (23), (37), and Assumption (A4), we obtain

𝑑 (𝑇𝑥2𝑛+1, 𝑇𝑥∗) ≤ 𝜓 (𝑑 (𝑥2𝑛+1, 𝑥∗)) , 𝑛 = 0, 1, 2, . . . , (38)

that is,

𝑑 (𝑥2𝑛+2, 𝑇𝑥∗) ≤ 𝜓 (𝑑 (𝑥2𝑛+1, 𝑥∗)) , 𝑛 = 0, 1, 2, . . . . (39)
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Passing to the limit as 𝑛 → ∞, using (34), the continuity of 𝜓
at 0, and the fact that 𝜓(0) = 0 (see Lemma 3), we get

𝑑 (𝑥∗, 𝑇𝑥∗) = 0, (40)

that is,

𝑥∗ = 𝑇𝑥∗. (41)

Next, using (37), (41), and Assumption (A3), we obtain

𝑥∗ = 𝑇𝑥∗ ⪰ 𝑆𝑇𝑥∗ = 𝑆𝑥∗, (42)

that is,

𝑥∗ ⪰ 𝑆𝑥∗. (43)

Since ⪯ is a partial order, inequalities (37) and (43) yield

𝑥∗ = 𝑆𝑥∗. (44)

Further, (41) and (44) yield that 𝑥∗ ∈ 𝑋 is a solution to
problem (1). Therefore, (i) is proved.

Suppose now that 𝑦∗ ∈ 𝑋 is another solution to (1)
with 𝑥∗ ̸= 𝑦∗. Using Assumption (A4) and the result (i) in
Lemma 3, we obtain

𝑑 (𝑥∗, 𝑦∗) = 𝑑 (𝑇𝑥∗, 𝑇𝑦∗) ≤ 𝜓 (𝑑 (𝑥∗, 𝑦∗))
< 𝑑 (𝑥∗, 𝑦∗) , (45)

which is a contradiction. Therefore, 𝑥∗ ∈ 𝑋 is the unique
solution to (1), which proves (ii).

Passing to the limit as𝑚 →∞ in (32), we obtain estimate
(16). In order to obtain estimate (17), observe that, by (26), we
inductively obtain

𝑑 (𝑥𝑛+𝑘, 𝑥𝑛+𝑘+1) ≤ 𝜓𝑘+1 (𝑑 (𝑥𝑛−1, 𝑥𝑛)) ,
𝑛 ≥ 1, 𝑘 ≥ 0, (46)

and hence, similar to the derivation of (32), we obtain

𝑑 (𝑥𝑛+𝑝, 𝑥𝑛) ≤
𝑝

∑
𝑘=1

𝜓𝑘 (𝑑 (𝑥𝑛−1, 𝑥𝑛)) , 𝑝 ≥ 0, 𝑛 ≥ 1. (47)

Now, passing to the limit as 𝑝 → ∞, (17) follows.
The proof is complete.

Observe thatTheorem 4 holds true if we replace Assump-
tion (A2) by the following.

Assumption (A2)󸀠. The operator 𝑆 : 𝑋 → 𝑋 is level closed
from the right; that is, the set

lev 𝑆⪰ = {𝑥 ∈ 𝑋 : 𝑥 ⪰ 𝑆𝑥} (48)

is nonempty and closed.
As a consequence, we have the following result.

Theorem 5. Suppose that Assumptions (A1) and (A2)󸀠–(A4)
are satisfied. Then

(i) for any 𝑥0 ∈ 𝑙𝑒V 𝑆⪰, the Picard sequence {𝑇𝑛𝑥0}
converges to some 𝑥∗ ∈ 𝑋, which is a solution to (1),

(ii) 𝑥∗ ∈ 𝑋 is the unique solution to (1),
(iii) the following estimates

𝑑 (𝑇𝑛𝑥0, 𝑥∗) ≤ 𝜇𝑛 (𝑑 (𝑇𝑥0, 𝑥0)) , 𝑛 = 0, 1, 2, . . . ,
𝑑 (𝑇𝑛𝑥0, 𝑥∗) ≤ 𝜇1 (𝑑 (𝑇𝑛−1𝑥0, 𝑇𝑛𝑥0)) ,

𝑛 = 1, 2, 3, . . .
(49)

hold.

Taking 𝑆 = 𝐼𝑋 (the identity operator), we obtain imme-
diately from Theorem 4 (or from Theorem 5) the following
fixed point result.

Corollary 6. Let (𝑋, 𝑑) be a complete metric space. Let 𝑇 :
𝑋 → 𝑋 be a given mapping. Suppose that there exists some
𝜓 ∈ Ψ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , (𝑥, 𝑦) ∈ 𝑋 × 𝑋. (50)

Then

(i) for any 𝑥0 ∈ 𝑋, the Picard sequence {𝑇𝑛𝑥0} converges
to some 𝑥∗ ∈ 𝑋, which is a fixed point of 𝑇,

(ii) 𝑥∗ ∈ 𝑋 is the unique fixed point of 𝑇,
(iii) the following estimates

𝑑 (𝑇𝑛𝑥0, 𝑥∗) ≤ 𝜇𝑛 (𝑑 (𝑇𝑥0, 𝑥0)) , 𝑛 = 0, 1, 2, . . . ,
𝑑 (𝑇𝑛𝑥0, 𝑥∗) ≤ 𝜇1 (𝑑 (𝑇𝑛−1𝑥0, 𝑇𝑛𝑥0)) ,

𝑛 = 1, 2, 3, . . .
(51)

hold.

Remark 7. Observe that all the obtained results hold true if we
replace the partial order ⪯ by any binary relationR which is
antisymmetric; that is,R satisfies

(𝑥, 𝑦) ∈ 𝑋 × 𝑋,
𝑥R𝑦, 𝑦R𝑥 󳨐⇒ 𝑥 = 𝑦. (52)

We end the paper with the following illustrative example.

Example 8. Let𝑋 = [0,∞) and 𝑑 be the metric on𝑋 defined
by

𝑑 (𝑥, 𝑦) = 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 , (𝑥, 𝑦) ∈ 𝑋 × 𝑋. (53)

Then (𝑋, 𝑑) is a complete metric space. Let R be the binary
relation on𝑋 defined by

R = {(𝑥, 𝑥) : 𝑥 ∈ 𝑋} ∪ {(0, 2)} . (54)
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Consider the partial order on𝑋 defined by

(𝑥, 𝑦) ∈ 𝑋 × 𝑋, 𝑥 ⪯ 𝑦 ⇐⇒ (𝑥, 𝑦) ∈R. (55)

Let us define the pair of mappings 𝑇, 𝑆 : 𝑋 → 𝑋 by

𝑇𝑥 = {{{
𝑥 if 𝑥 ∉ {0, 2} ,
2 otherwise,

𝑆𝑥 = {{{
2 if 𝑥 ∈ [0, 2] ,
1 if 𝑥 > 2.

(56)

Observe that, in this case, we have

lev 𝑆⪯ = {𝑥 ∈ 𝑋 : 𝑥 ⪯ 𝑆𝑥} = {0, 2} , (57)

which is nonempty and closed set. Therefore, the operator 𝑆 :
𝑋 → 𝑋 is level closed from the left, and Assumption (A2) is
satisfied. Moreover, we have

{𝑥 ∈ 𝑋 : 𝑆𝑥 ⪯ 𝑥} = {2} . (58)

In order to check the validity of Assumption (A3), let 𝑥 ∈ 𝑋
be such that 𝑥 ⪯ 𝑆𝑥; that is, 𝑥 ∈ {0, 2}. If 𝑥 = 0, then 𝑇𝑥 =
𝑇0 = 2 and 𝑆𝑇𝑥 = 𝑆𝑇0 = 𝑆2 = 2. Then 𝑆𝑇𝑥 ⪯ 𝑇𝑥. If 𝑥 = 2,
then 𝑇𝑥 = 𝑇2 = 2 and 𝑆𝑇𝑥 = 𝑆𝑇2 = 𝑆2 = 2. Then 𝑆𝑇𝑥 ⪯ 𝑇𝑥.
Now, let 𝑥 ∈ 𝑋 be such that 𝑆𝑥 ⪯ 𝑥; that is, 𝑥 = 2. In this
case, we have 𝑆𝑇𝑥 = 𝑆𝑇2 = 𝑆2 = 2 and 𝑇𝑥 = 𝑇2 = 2. Then
𝑇𝑥 ⪯ 𝑆𝑇𝑥. Therefore, Assumption (A3) is satisfied. Now, let
(𝑥, 𝑦) ∈ 𝑋 × 𝑋 be such that 𝑥 ⪯ 𝑆𝑥 and 𝑆𝑦 ⪯ 𝑦; that is,
𝑥 ∈ {0, 2} and 𝑦 = 2. For (𝑥, 𝑦) = (0, 2), we have
𝑑 (𝑇𝑥, 𝑇𝑦) = 𝑑 (𝑇0, 𝑇2) = 𝑑 (2, 2) = 0 ≤ 𝜓 (𝑑 (0, 2)) , (59)

for every 𝜓 ∈ Ψ. For (𝑥, 𝑦) = (2, 2), we have
𝑑 (𝑇𝑥, 𝑇𝑦) = 𝑑 (𝑇2, 𝑇2) = 0 ≤ 𝜓 (𝑑 (2, 2)) = 𝜓 (0) , (60)

for every 𝜓 ∈ Ψ. Therefore, Assumption (A4) is satisfied.
Now, applying Theorem 4, we deduce that problem (1) has a
unique solution 𝑥∗ ∈ 𝑋. Clearly, in our case, we have 𝑥∗ = 2.
Remark 9. Note that Theorem 4 (or Theorem 5) provides us
just the existence and uniqueness of a common fixed point of
the operators 𝑇, 𝑆 : 𝑋 → 𝑋. However, the uniqueness of the
fixed points of 𝑇 is not satisfied in general. As we observe in
Example 8, the operator 𝑇 has infinitely many fixed points.
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