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WEIGHTED ITERATED HARDY-TYPE INEQUALITIES
AMIRAN GOGATISHVILI AND RZA MUSTAFAYEV

AsstractT. In this paper a reduction and equivalence theorems fordhededness of the composition of a
quasilinear operatdr with the Hardy and Copson operators in weighted Lebesguespae proved. New
equivalence theorems are obtained for the opefatorbe bounded in weighted Lebesgue spaces restricted
to the cones of monotone functions, which allow to changectivee of non-decreasing functions to the
cone of non-increasing functions and vice versa not chanthie operatoml . New characterizations of the
weighted Hardy-type inequalities on the cones of monotonetions are given. The validity of so-called
weighted iterated Hardy-type inequalities are charaztelri

1. INTRODUCTION

The well-known two-weight Hardy-type inequalities

(1.1) ( fo m( fo t@) dr)qw(x)dx)l/q sc( fo ) fp(x)v(x)dx)l/p

and

(1.2) ( fo m( f ) dr)qw(x)dx)l/q sc( fo ) fP(x)v(x)dx)l/p

for all non-negative measurable functioh®n (0 o), where 0< p, g < o with ¢ being a constant
independent of , have a broad variety of applications and represents novsia tol in many parts of
mathematical analysis, namely in the study of weightedtfonanequalities. For the results, history and
applications of this problem, seg&d, 34, 36].

Throughout the paper we assume that (a, b) C (0, o). By Mi(l1) we denote the set of all measurable
functions onl. The symboi*(I) stands for the collection of afi € Mi(l) which are non-negative on
I, while Wi (1; |) andMi*(1; T7) are used to denote the subset of those functions which arécceasing
and non-decreasing dnrespectively. Whemh = (0, o), we write simplyDi anddi' instead ofli*(I; |)
andMi*(l; 1), accordingly. The family of all weight functions (also kel just weights) o, that is,
locally integrable non-negative functions on ¢9), is given by W(l).

Forp € (0, co] andw € Mi*(I), we define the functional- ||, onMi(l) by

Tl { (Fr e d)™® it peo
T Tesssuplf(m(xy  if p=ww.

p

If, in addition,w € ‘W(l), then the weighted Lebesgue spaééw, |) is given by
Lp(W, I) ={f e g‘R(I) : ”f”p,w,l < 00},
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and it is equipped with the quasi-notm||pw, -
Whenw = 1 onl, we write simplyLP(l) and|| - ||, instead ofLP(w, I) and|| - [|pw,, respectively.
Supposef be a measurable a.e. finite function ®h Then its non-increasing rearrangemeéntis
given by
f*@) = inf{A>0:|{xeR": |f(X)|> )| <t}, te (0, ),

and letf* denotes the Hardy-Littlewood maximal functionfafi.e.

1 t
() = ¥f f*(r)dr, t>0.
0

Quite many familiar function spaces can be defined usingdhemncreasing rearrangement of a function.
One of the most important classes of such spaces are thdled-cassical Lorentz spaces.

Let p € (0, ) andw € W. Then the classical Lorentz space¥w) andI'P(w) consist of all functions
f e M for which|| fllapw) < co and||f|lrew) < oo, respectively. Here it is

I llarew) = 11T 1l pw.(0.00) and  [[fllrew) = 1T llpw(0,00)-

For more information about the LorendzandI” see e.g. 11] and the references therein.

There has been considerable progress in the circle of prebd®ncerning characterization of bound-
edness of classical operators acting in weighted Lorerdzespsince the beginnig of the 1990s. The
first results on the problemP(v) — TP(v), 1 < p < oo, which is equivalent to inequalityl(1) re-
stricted to the cones of non-increasing functions, weraiobtl by Boyd §] and in an explicit form by
Arino and Muckenhouptd]. The problem withw # vandp # g, 1 < p, g < oo was first successfully
solved by Sawyer40]. Many articles on this topic followed, providing the retsulor a wider range of
parameters. In particular, much attention was paid to iaktes (L.1) and (L.2) restricted to the cones
of monotone functions; see for instancg 4, 10,12, 15, 22-32, 35, 37, 40, 43, 45-47], survey [L1], the
monographsd3, 34, for the latest development of this subject s&€[and references given there. The
restricted operator inequalities may often be handled bystitcalled "reduction theorems”. These, in
general, reduce a restricted inequality into certain restricted inequalities. For example, the restriction
to non-increasing or quasi-concave functions may be hdndléhis way, see e.g.2f-27,47]. At the
initial stage the main tool was the Sawyer duality princiglé€], which allowed one to reduce d® — LY
inequality for monotone functions with £ p, q < o to a more manageable inequality for arbitrary
non-negative functions. This principle was extended bp&tev in i6]tothe case &k p< 1< Q< .

In the same work Stepanov applied &elient approach to this problem, so-called reduction thesye
which enabled to extend the range of parameters4opl< co, 0 < g < 0. Thecas@ <q,0<p<1
was alternatively characterized 8, [L2, 35,46,47]. Later on some direct reduction theorems were found
in [10,23,27] involving supremum operators which work for the case § < p < 1.

In this paper we consider operatdrs M+ — M* satisfying the following conditions:

(i) T(af) =AT fforall A > 0 andf € M*;

(i) Tf(x) < cTgXx) for almost allx € R, if f(x) < g(x) for almost allx € R,, with constant > 0
independent of andg;

(i) T(f +A1) <c(Tf+aT1)forall f € M* andA > O, with a constant > 0 independent of andA.

Given a operator : M — M*, for 0 < p < co andu € N+, denote by

Tou(@) = (T(@PW)"?,  geM.
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HenceT,; = T. Whenp = 1, we writeT, instead ofTy,.
Denote by

t
Ha(t) ::fg(s)ds gem,
0
and
Heg(t) = f o9ds  gewr,
t

the Hardy operator and Copson operator, respectively.

In the paper we prove a reduction and equivalence theorenteddoundedness of the composition
operatorsl oH or T o H* of a quasiliear operatdr : 9t* — Mi* with the operatorsl andH* in weighted
Lebesgue spaces. To be more precise, we consider inegsialiti

(1.3) “T( fo ' h)

and
< C||h||S,V,(O,oo)’ he M.

(1.4) “T( f h)
X B.w,(0,c0)

Using these equivalence theorems, in particular, we camilgleharacterize the validity of the iterated
Hardy-type inequalities

< c|Ihllsv,0.e0), N € M,
IBsW’(O’OO)

X
(1-5) HHp,u(f h) SCHhHsv,(O,oo),
0 a.w,(0,00)
and
(1.6) ij,u( f h) < ClINllsu (e
X q,w,(0,00)

where O< p< 00,0< Q< o0, 1< s< o0, U, wandv are weight functions on (0o).
It is worth to mentoin that the characterizations of "dualéqualities

(1.7) iH;;u( f h) < Clhllsv,0.c0)»
X q.w,(0,00)

and
X

(1.8) (et f n) < Clihllsv o0
0 a,w,(0,00)

can be easily obtained from the solutions of inequalitieS) - (1.6), respectively, by change of variables.
In the case whemp = 1, using the Fubini Theorem, inequalitieis§) and (L.6) can be reduced to the
weightedL® — L9 boundedness problem of the Volterra operator

X
(KR)(x) 1= fo K yhe)dy. x>0,
with the kernel y
k(x,y) := f ut)ydt, O<y< x< oo,
y

L h@)dt
SH9= | g rum

respectively, and consequently, can be easily solvedebhde

and the Stieltjes operator



4 A. GOGATISHVILI AND R.CH.MUSTAFAYEV

By the Fubini Theorem, we see that

f ( f th(T)dT)u(t)dt: f K Dh@dr,  he M0, c0).
0 0 0

On the other hand, it is easy to see that

X 00
f (f h(s) ds) u(t) dt =~ U(x) - S(hU)(x), h e M* (0, o).
0 t
Note that the weightet® — L9 boundedness of Volterra operatétsthat is, inequality
(1-9) ||Kh||q,w,(0,oo) < C||h||s,v,(0,oo), he er(O, 00),

is completely characterized ford s < o0, 0 < g < oo (see P7] and references given there).
The usual Stieltjes transform is obtained on puttig) = x. In the caseJ(x) = x!, 1 > 0, the
boundedness of the opera®between weightetd® andLY spaces, namely inequality

(1.10) IS I'”q,w,(o,oo) < C”h”sv,(o,oo), h € M*(0, o0),

was investigated in7] (when 1< s< g < ), in [4]1] (when 1< q < S < ), in [13] (see also [4])
(when 1< s < o0, 0 < g < o), where the result is presented without proof. This prob&so was
considered in16] and [20, 21], where completely dferent approach was used, based on the so called
“gluing lemma” (see alsol[7]). Itis proved in [L9] (when 1< s < o0, 0 < g < o) that inequality {.10

| |u(f )
X

holds, and the solution ofL(10 is obtained using characterization of inequalityl(l).
Note that inequalityX.6) has been completely characterized ig][and [L9] in the case (x p < o,
0 < Q< o, 1< s< oo by using dificult discretization and anti-discretization methods gunaities (1.5
- (1.6) and (.7) - (1.8) were considered also iB§] and [39], but characterization obtained there is not
complete and seems to us unsatisfactory from a practicat pbview.

We pronounce that the characterizations of inequalitle§+(1.6) and (L.7)-(1.8) are important be-
cause many inequalities for classical operators can beeedw them (for illustrations of this important
fact, see, for instancel§]). These inequalities play an important role in the theohMworrey-type
spaces and other topics (se#, [[7] and [9]). It is worth to mention that using characterizations of
weighted Hardy inequalities we can show that the charaetgoin of the boundedness of bilinear Hardy
inequalities, namely of the inequality

(1.11) ’

< C”hU”sv,(O,oo), he iUt+(O, ),
q,w,(0,00)

(1-12) ”Tlf : T29||w,q,(0,oo) < C”f||p1,v1,(0,oo)||g||pz,vz,(O,oo),

forall f € LP*(vy, (0,0)) andg € LP2(v,, (0, «)) with constantc independent off andg, whereT; =
HorH* i =1, 2, are equivalent to inequalitie$.p)-(1.6) and (L.7)-(1.8) (see, for instance]).

It is well-known that wherT is a integral operator then by substitution of variables ipossible to
change the cone of non-decreasing functions to the conawinmeasing functions and vice versa, when
considering inequalities

(1.13) IT fllgw0e0) < Cllfllsv.(0.00)5 f € M0, ),
and

(1.14) IIT fllgw,0.00) < Cll Fllsv,0.00) f € M0, ),
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but this procedure changé&salso as usually to the "dual” operator. Theorems proved ¢ti@e4 allows

to change the cones to each other not changing the opédraldris new observation enables to state that
if we know solution of one inequality on any cone of monotomedtions, then we could characterize the
inequality on the other cone of monotone functions.

The paper is organized as follows. Sectidmrontains some preliminaries along with the standard
ingredients used in the proofs. In Secti®nve prove the reduction and equivalence theorems for the
boundedness of the composition operafiossH or T o H* in weighted Lebesgue spaces. In Sectidhe
equivalence theorems which allow to change the cones of tnnadunctions to each other not changing
the operatoil are proved. In SectioB we obtain a new characterizations of the weighted Hardg-typ
inequalities on the cones of monotone functions. In Sediame give complete characterization of

inequalities (.5 - (1.6) and (.7) - (1.9).

2. NOTATIONS AND PRELIMINARIES

Throughout the paper, we always denotecliy C a positive constant, which is independent of main
parameters but it may vary from line to line. However a camstéth subscript or superscript such@s
does not change in filerent occurrences. By < b, (b > a) we mean thaa < Ab, whered > 0 depends
on inessential parameters.df< b andb < a, we writea ~ b and say thaa andb are equivalent. We
will denote by1 the functionl(x) = 1, x € (0,). Unless a special remark is made, th&etential
elementdx is omitted when the integrals under consideration are thlesgue integrals. Everywhere in
the papery, vandw are weights.

Convention 2.1. We adopt the following conventions:

(i) Throughout the paper we put©o = 0, c0/c0 = 0 and Q0 = 0.

(i) If pe[1,+o0], we definep’ by 1/p+1/p’ = 1.

(i) If0 <g< p< o, we definer by 1/r = 1/g-1/p.

(iv) If I = (a,b) € R andg is monotone function o, then byg(a) andg(b) we mean the limits
limy_a, g(X) and lim_,,_ g(X), respectively.

To state the next statements we need the following notations
u(t) := fot u U= ["u
V(t) = fotv, Vi) = [TV,
W(t) = fotw, W) == [T w.

Theorem 2.2 ([27], Theorem 3.1)Let0 < 8 < 0 andl < S< oo, and let T: M* — M* be a positive
operator. Then the inequality

(2.1) IIT fllgw,0.00) < Cll Fllsv,0.00)s f € MO, )

implies the inequality
< cllhllsysvi-s (0,00)5 h € M (0, o).

2.2) “T( f h)
X ﬁ,W,(O,oo)

If V(o) = co and if T is an operator satisfying conditio(i3-(ii) , then the conditioii2.2) is syficient for
inequality(2.1) to hold on the con®i!. Further, if0 < V(c0) < oo, then a syicient condition for(2.1) to
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hold onMt! is that both(2.2) and

(2.3) 1T Llgw,0.00) < CllIsv,0,00)

hold in the case when T satisfies the conditib)§ii) .

Theorem 2.3 ([27], Theorem 3.2) Let0 < 8 < o and1l < s < o0, and let T: M* — I+ satisfies
conditions(i) and(ii). Then a sfficient condition for inequality2.1) to hold is that

(2.4) HT(VZL(X) fo ' )

Moreover,(2.1) is necessary fo2.4) to hold if conditiong(i)-(iii) are all satisfied.

S C||h||S,V1_S,(O,OO)3 h (S EUE_'—(O, OO).
B,w,(0,00)

Theorem 2.4 ([27], Theorem 3.3)Let0 < 8 < 0 andl < s< oo, and let T: M* — M* be a positive
operator. Then the inequality

(2.5) IIT fllgw,0.00) < Cll Fllsv,0.00)s f € M0, o)

implies the inequality
< cllhllsysvi-s (0,00)5 h e M*(0, ).

X
(2.6) “T( f h)
0 ﬁ,W,(O,oo)

If V.(0) = oo and if T is an operator satisfying the conditiofis(ii) , then the conditioff2.6) is syficient
for inequality(2.5) to hold. If0 < V,(0) < oo and T is an operator satisfying the conditiafms(iii) , then
(2.5) follows from(2.6) and (2.3).

Theorem 2.5 ([27], Theorem 3.4)Let0 < B < o andl < s < oo, and let T: M* — IM* satisfies
conditions(i) and(ii). Then a sfficient condition for inequality2.5) to hold is that

@D HT(vgl(x) fxm v.)

Moreover,(2.5) is necessary fo(2.7) to hold if conditiongi)-(iii) are all satisfied.

< C||h||s’vl—s’(0’oo), he EI]?+(O, OO)
B’W’(o’m)

3. REDUCTION AND EQUIVALENCE THEOREMS
In this section we prove some reduction and equivalence¢henfor inequalitiesl(3) and (L.4).

3.1. Thecase 1 < s < . The following theorem allows to reduce the iterated ineiqudl.3) to the
inequality on the cone of non-increasing functions.

Theorem 3.1. LetO < B < 00,1 < S< oo, and let T: M* — M+ satisfies condition§)-(iil) . Assume
that u w e ‘W(0, o0) and ve W(0, =0) be such that

X
(3.2) f vES (t) dt < oo for all x> 0.
0
Then inequality(1.3) holds jf
(3.2) I To2 fllpum0o0) < Cllfllsg 000 T € MY,
holds, where

53 = 915109 = ( fo @) v

and

D(x) = B[V; S|(X) = fo X¢(t)dt:( fo le—g(t)dt)#
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Proof. Note thatd—S¢*~S ~ v. Inequality (L.3) is equivalent to the inequality
1 X

Obviously, 3.3 is equivalent to
< C||h||s,¢1-5,(0,oo), he M.

1 X
T (— f hcp)
@ D2(x) Jo 8,,(0,00)

By Theorem?2.3, inequality 8.4) is equivalent to

S C”hlls,(b’s¢1’s,(0,00)’ h (S SJJE-F.
B’W’(O’OO)

(3.4)

T2 Fllgw,0.00) < Cllfllsg,000) T € M,
This completes the proof. |

We immediately get the following equivalence statements.

Corollary 3.2. Let0<B < 0,1 <s<00,0<d<s,andlet T: M+ — M* satisfies condition@)-(iii) .
Assume that,uwv € W(0, ) and ve W(0, o) be such tha{3.1) holds. Then inequalityl.3) holds jf

both
o N\ 1/6
(3.5) ‘ T(Dz( {f h‘s} ) < C||h||3@5/6¢1—5/6’(0’00), h e Mm*,
X 8,,(0,00)
and
(3.6) ITep2(D)llgw,0.00) < CllLls,(0,00)5
hold.

Proof. By Theorem3.1, inequality (L.3) is equivalent to

(3.7) T2 fllgw0e) < Cllfllss o0 T € ML
Since @.7) is equivalent to

(3.8) IT fllgjmoe) < Cllfllsissoo, T €M,
with

T(f) 1= Tl 1)),
it remains to apply Theore.2 |

Corollary 3.3. LetO0 <8< 00,1 <S<00,0<§ < s,andlet T: M* — IM* satisfies condition§)-(iii) .
Assume that,uw € ‘W(0, o0) and ve W(0, «) be such tha{3.1) holds. Then inequalit¢l.3) holds jf

X 1/6
T¢,2(11/5)({ f h5q>} )
0

Proof. By Theorem3.1, inequality (L.3) is equivalent to

< dlhllggr-s5,0.00), N € m*
B.W,(0,00)

(3.9) ’

holds.

(3.10) T2 fllgw0e) < Cllfllss o0 T € ML
We know that 8.10 is equivalent to

(3.11) IT fllg/mo) < Cllfllsios 00, T €M,
with

T(F) o= {Toe())
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By Theorem2.3, we see that3.11]) is equivalent to

— 1 X
(3.12) “T((DZ—(X) fo hd))‘
To complete the proof it glices to note that3(12) is equivalent to §.9). |

< &llhllg/5g1-555.(0.00)s N € MT(O, 00).
B/6.w,(0,00)

The following "dual” version of the reduction and equivatenstatements also hold true and may be
proved analogously.

Theorem 3.4. LetO < B < 00,1 < S< oo, and let T: M* — M+ satisfies condition§)-(ii)) . Assume
that u w e W(0, o0) and ve W(0, o) be such that

(3.13) fw ViS(t)dt<oco  forall  x>0.
Then inequality(1.4) holds ff '

(3.14) T2 fllgwes) < Cllfllsy o) T €M
holds, where

w(x) = [V S|(%) = ( fx T dt)_%vl‘g(x)

and

00 00 1
W(X) = Y[V §|(X) = f () dt = ( f V=S (1) dt)“
X X
Corollary 35. Let0<B < 0,1 <sS<00,0<d<s,andlet T: M+ — M* satisfies condition@)-(iii) .
Assume that,uw € W(0, «0) and ve W(0, o) be such tha{3.13 holds. Then inequalit{l.4) holds jf

both
X 1/6
(315) T\.IIZ( {f hﬁ} ) S C”h”s’\.}ls/b‘wl—s/d’(o’oo), h € EUE-F,
0 B,w,(0,00)
and
(3.16) M2 Llgw,0,00) < Cll s, (0,00)»
hold.

Corollary 3.6. Let0<B < 0,1 <S<00,0<d<s,andlet T: M+ — M* satisfies condition@)-(iii) .
Assume that,uw € ‘W(0, o0) and ve W(0, =) be such tha{3.13 holds. Then inequalit{l.4) holds jf

00 1/6
Tyea-176) ({ f h(s‘l"} )
X

The following theorem allows to reduce the iterated ineiqudll.3) to the inequality on the cone of
non-decreasing functions.

(3.17)

< C||h||s’¢1—s/6’(0’oo), heMm*
B’W’(o’m)

holds.

Theorem 3.7. Let0 < B < 00,1 < S< oo, and let T: M* — M+ satisfies condition§)-(iil) . Assume
that u w e W(0, o0) and ve W(0, ) be such tha{3.1) holds. Then inequalitfl.3) holds jf both

||T¢2[V;S]~‘1’2/5[<D[V;S]S/5¢[v;511*5/5;5/6] f||ﬂ,W,(O,oo) < difllsyorvgsovst-ss:s/.000)s T € !,
where0 < § < s,

Y[ @[v; )°¢v; §I1°; 5/6](X)
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00 { _
([ (J,»)
X 0
s’+(s/é)’

P[O[v; S]S/6¢[V; s]l—s/(s; 5/6](%) ~ {f"o ( ft Vl_s/) Vl 5'( ) dt }1+(s/o) ’
X 0
and(3.6) hold.

g +(s/9)’ _+(s/9)

1+¢ 1 Sl(t)d 1+(s/r3) f Vl s, 1+s’V1 s,(x)

Proof. By Corollary3.2, (1.3) holds it both 3.5 and @3.6) hold. It is easy to see thad.f) is equivalent
to

.19 |

Since

S C6||h||s/6,(l>5/5¢1*5/5,(0,oo), h € EUE-F,
3/6,w,(0,00)

Y[ ®@[v; s]¥°8[v; 5] 5/6](X)
(S/b)/

[ ot o) * 0w 974 900 909

(s/9)'
o) +1

ol

(01 97659 (9 - dfv; 77 ()|
([

([ ([

Y[D[v; §¥°0[v; §*%°; 5/6](X)

(f O[v; 5" g[v; ])(S/«%'ﬂ

v, S]l (s/oy (X) D[v; S]l (5/5)( ))(s/a) 1

{(f ) h (fomvl—s')%}ﬁ

g +(s/9)’

f fvlg iy 15,()d}1+(s/a)

by Theoren®.4, we complete the proof. ]

o[v; 5" ()gv; sl(¥)

X

1-(s/9)’ (/3 S +(s/9)

([ e f ) e

_I+(s/9) _(s/9)" _ I+(s/9)

Ly 1 s (t) dt TTi(sley Vl_ s I+ Vl_ s (X),
0

X

X

and

X
—_—

2

Corollary 3.8. Let0 < 8 < 0,1 < S< o0, and let T: M* — M* satisfies condition§)-(iii) . Assume
that u w e W(0, o0) and ve W(0, ) be such tha{3.1) holds. Then inequalitfl.3) holds jf both

||T<1>2[V;S]~‘1’4/S[<1>[v;512¢[V;S]*1;2]f”ﬁ,w,(o,oo) < Cllfllsyiopgovs 210000 T € m,

where

Y[@Lv; s’glv; 57 2](x)

f fvl #) "o g(t)dt}_%(foxvl‘g) (),
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N ;
Polv, v, 972100 ~ | f ( f vs) g
X 0

Proof. The statement follows by Theoresn7 with § = s/2. O

and(3.6) hold.

The following "dual” statement also holds true and may bevpdoanalogously.

Theorem 3.9. Let0 < 8 < 0,1 < S< 00, andlet T: MM+ — IN* satisfies condition§)-(iii) . Assume
that u w e W(0, ) and ve W(0, ) be such tha{3.13 holds. Then inequalitfl.4) holds jf both

Toatvsazetetvasostugi-=sisral Fllg oo < Al llsoteeg=ontvgisoisio o). f € ML,
where0 < 6 < s,

o[V, sI¥ulv; s]*°; s/6](X)
s’+(s/(5) (s/9) ) & +(s/5)

L e (o) o

O[PLV; §|¥ylv; 8777 5/6](%) ~ {f (f ) vl‘g) T °(t) dt }W)
and (3.6) hold. oo

Corollary 3.10. LetO <8 < 0,1 < s< oo, and let T: M* — M* satisfies condition@)-(iii) . Assume
that u w e W(0, ) and ve W(0, ) be such tha{3.13 holds. Then inequalitfl.4) holds jf both

||T‘P2[v;s]-@4/5[‘P[v;s]2l//[v;s]-1;2]f”B’W’(O’OO) < cll fllsopepvszovg-12.000) T € MY,
where

o[P[v; s]2ulv; s 715 2](%)

z{fox(ftmvl-s“) s g(t)dt}_%(fwvl‘g) .

2+9.

of¥lv gl 94209~ { [ ([ g(t)dt}

3.2. Thecase s= 1. In this case we have the following results.

and(3.6) hold.

Theorem 3.11. Let0 < B8 < oo, and let T : M* — MW" satisfies conditionsi)-(iii) . Assume that
u, w € W(0, o) and ve W(0, o0) be such that Yx) < oo for all x > 0. Then inequality

(3.19) “T( fo h

holds jf
(3.20) vz fllsw0.e0) < €l flliv (o) f € M.

< cllhllyy-1,0.00) €M,

3,W,(0,00)

Proof. Inequality 3.19 is equivalent to the inequality

1 X
Tvz(—V2 o fo hv)
By Theorem?2.3, inequality 8.21) is equivalent t0§.20). O

(3.21)

< c|Ihll10.0), h € M.
B,w,(0,00)
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Corollary 3.12. Let0 <8< 0,0< 6§ <1, andlet T: M* — M+ satisfies condition§)-(iii) . Assume
that u w e W(0, ) and ve W(0, =) be such that k) < o for all x > 0. Then inequality(3.19 holds

iff both
o N\ 1/6
(3.22) Tvz( {f h(s} ) < C||h||1’V1/5V171/5’(0’00), he M,
X B,w,(0,00)
and
(3.23) ITv2(D)llgm0.00) < CllUl1v,(0,00)
hold.

Proof. By Theorem3.11, inequality 3.19) is equivalent to$.20. Since @.20) is equivalent to
0
(3.24) [(Tve(t |

it remains to apply Theore.2 |

<c|If ), T €M,
3/6.w,(0,00) [ITll1/6v,(0.00)

Corollary 3.13. Let0 <8< 0,0< 6 <1, andlet T: Mt — M* satisfies condition)-(iii) . Assume
that u w e W(0, ) and ve W(0, =0) be such that k) < o for all x > 0. Then inequality(3.19 holds

I
TV2(1-1/5)({ jo\x h5V}1/6)

Proof. By Theorem3.11, inequality 3.19 is equivalent to§.24). By Theoren.3, we see that3.24) is
equivalent to

@20 el [ )

To complete the proof it gtices to note that3(26) is equivalent to §.25). |

(3.25)

< cllhlly -1 (0.00), h € MT
B,w,(0,00)

holds.

< Cﬁ||h||1/5,v171/5,(o,oo), he EIR*(O, 00)-
B/6,w,(0,00)

The following theorem allows to reduce the iterated ineqyéB.19 to the inequality on the cone of
non-decreasing functions.

Theorem 3.14. Let0 < B < oo, and let T : M* — IM* satisfies conditionsi)-(iii) . Assume that
u, w € W(0, ) and ve W(0, ) be such that YX) < « for all x > 0. Then inequalit¥3.19 holds jf
both

(3.27) ||TV2~“I’2/5[V1/5V1’1/5;1/6] f”ﬂ,w,(o,oo) < C”f||1,{//[V1/5v1*1/5;1/6],(0,00)’ fe ﬂRT,

whereO < 6 < 1,

19y

YV 1/51(x) ~ ( foo V_(1/6)'V)_mv—(1/5)/(X)V(X),

X

0o 1
\P[Vl/évl—(l/d); 1/8](X) ~ (f V_(l/(;)/v)h(l/é)’ ,
X

and(3.23 hold.
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Proof. By Corollary 3.12 inequality 3.19 holds it both 3.22 and .23 hold. It is easy to see that
(3.22 is equivalent to

(3.28) H[TVZ( { fxw h}w )r 8/6:,(0,00)

By Theorem3.4, inequality 38.28 is equivalent to

0
' [TVZ\P2/6 [Vl/dvl—l/d;l/(g] ( f 1/6)] ’

which is evidently equivalent t@3(27).
It remains to note that

< Cﬁ||h||1/5,V1/5V1’1/5,(0,00)’ heMm".

< C(SHf||1/6,¢[V1/5v1*1/5;1/6],(0,oo), fe ng’
B/6,w,(0,00)

1/9)

w[vl/dvl—l/ﬁ; 1/8](X) ~ ( f ” V—(1/6)’V)_mv—(1/5)/(X)V(X),

X
00 1
PIVEEE; 16103 ~ f vy
X
O

Corollary 3.15. Let0 < B < oo, and let T: M* — IM* satisfies conditiong)-(iii) . Assume that
u, w € W(0, c0) and ve W(0, ) be such that ¥X) < oo for all x > 0. Then inequality3.19 holds jf
both

(3.29) T

< ol flluypvavizoe) T €M,

V2‘P4[V2\F1;2] ( f ) 5 1(0:0)

where

2

YIVAL 2](x) ~ ( f ) V‘Zv)_ “V2vx)

YIVA L 2](X) ~ ( f ) V‘zv)l/s,
and(3.23 hold.

Proof. The statement follows by TheoreBnl4with 6 = 1/2. |

The following statement immediately follows from Theor&m 1

Corollary 3.16. Let0 < B8 < o, and let T: M* — M* satisfies conditions)-(iii) . Assume that
u, w e W(0, o) and ve W(0, =) be such that X) < « for all x > 0 and V,(0) = co. Then inequality

(3.30) HT( fo ' h)

< cllhllLy.. (o), 0 € MY,

8w, (0,00)
holds jf
(3.31) ITy-2 fllgmoe) < Sl Fllunz oo f €M
holds.
Proof. Since

it remains to apply Theore® 11 O
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Corollary 3.17. Let0 < 8 < 00,0< 6§ <1, andlet T: M* — M* satisfies condition§)-(iii) . Assume
that u w € W(0, ) and ve W(0, o) be such that x) < oo for all x > 0and V,(0) = . Then
inequality(3.30 holds jf both

ey

Corollary 3.18. Let0 <8< 0,0< § <1, andlet T: M* — M* satisfies condition§)-(iii) . Assume
that u w € W(0, ) and ve W(0, o) be such that Yx) < oo for all x > 0 and \V,(0) = . Then
inequality(3.30 holds jf

X 1/6
va(l/d—l)({ f hd} )
0

The following "dual” statements also hold true and may bevpdoanalogously.

(332) < Cl|h”]_’v*l/&zvl—l/d’(o’w), he S.Uﬁ,

3,W,(0,00)

holds.

(3.33)

S C||h||l,V§/6_2V1_1/5,(0,00)’ h € SJJE-F
B,w,(0,00)

holds.

Theorem 3.19. Let0 < B8 < oo, and let T : M* — MW" satisfies conditionsi)-(iii) . Assume that
u, w € W(0, o) and ve W(0, o0) be such that (x) < oo for all x > 0. Then inequality

(3.34) “T( fx ) h)

holds jf
(3.35) ITvz fllsw0.00) < Cllflliv o) f € M.

S C”h”l,V*_l,(O,OO)’ h € EIR+,
B.w,(0,00)

Corollary 3.20. Let0 < 8 < 00,0< § <1, andlet T: M* — M+ satisfies condition§)-(iii) . Assume
that u w e W(0, o) and ve W(0, o) be such that (X) < oo for all x > 0. Then inequality3.34) holds

iff both
MY
(3.36) TVE( {f h5} ) S C||h||1V1/5V1,1/5 (0 oo)’ h € in’t""
0 3,w,(0,00) o H
and
(3.37) ITv2(Dllgw(0,00) < CllAI1v,(0,00)5
hold.

Corollary 3.21. LetO<B < 00,0< 6 <1,andlet T: M+ — M* satisfies condition§)-(iii) . Assume
that u w e W(0, o) and ve W(0, o) be such that (X) < « for all x > 0. Then inequality3.34) holds

v/
Tyzcu({ f i hﬁv*}w)
X

(3.38)

Theorem 3.22. Let0 < B8 < oo, and let T : M* — M* satisfies conditionsi)-(iii) . Assume that
u, w e W(0, ) and ve W(0, =) be such that (x) < o for all x > 0. Then inequality3.34) holds jf
both

<l -1 0.00), N € MY
B,W,(0,00)

holds.

_ _ L
(3-39) ||Tvzdﬂ/ﬁ[V&“vlfl/ﬁ;l/al f”ﬁ,w,(o,oo) < CllFlly gpv2raa-siyje) oy F €I
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whereO < 6 < 1,

(1/9)

X (1))
¢[V*1/6V1—1/6; 1 / 6](X) ~ ( jo\ V*—(l/é)’v) T+(1/5) V*_(l/(s),(X)V(X),

1
(D[Vl/évl—(l/&); 1/5](X) N ( fx V—(l/‘s)’v) T+(1/0) ,
0
and(3.37) hold.

Corollary 3.23. Let0 < 8 < o, and let T: M* — M* satisfies conditions)-(iii) . Assume that
u, w € W(0, o) and ve W(0, o) be such that (X) < o for all x > 0. Then inequality3.34) holds jf
both

T

< cllfllgpvav 210005 T € ML,

V2o4[var-12| (f) 5 0,(0.00)

where

2

vt = ( [ v V200v0

X 1/3
q)[VfV_l;Z](X)z( f V;ZV) ,
0
and(3.37) hold.

Corollary 3.24. Let0 < B8 < o, and let T: M* — M* satisfies conditions)-(iii) . Assume that
u, w e W(0, o) and ve W(0, ) be such that ¥x) < « for all x > 0 and () = co. Then inequality

(3.40) “T( fx ) h)

holds jf

< cllhlliyv o), h €M™,

B,w,(0,00)

(3.41) ITy-2 fllgwoe) < Cllfllnyve oo f ML

Corollary 3.25. Let0 <8< 0,0< 6 <1, andlet T: M* — M* satisfies condition)-(iii) . Assume
that u w € W(0, ) and ve W(0, ) be such that {k) < oo for all x > 0 and (e0) = . Then
inequality(3.40 holds jf both

el )

Corollary 3.26. Let0 <8< 00,0<é <1,andlet T: M* — M* satisfies condition@)-(iii) . Assume
that u w € W(0, ) and ve W(0, ) be such that Y¥X) < oo for all x > 0 and ) = co. Then
inequality(3.40 holds jf

rel| [0
|

(3.42) < C||h||1,V1/5—2V1—1/5,(0,00), he M+,

B’W’(O’OO)

holds.

(3.43) < C||h||1’V3/5-2V1-1/5,(0,00), heMm*

B,w,(0,00)

holds.
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4, E)UIVALENCE THEOREMS FOR THE WEIGHTED INEQUALITIES ON THE CONES OF MONOTONE FUNCTIONS

As it is mentioned in the introduction, by substitution ofiables it is possible to change the cone
of non-decreasing functions to the cone of non-increasimgtfons and vice versa, when considering
inequalities .1) and @.5) for integral operator3. But this procedure changdsalso as usually to the
"dual” operator.

The following theorems allows to change the cones to eadr oibt changing the operator

Theorem 4.1. LetO < 8 < 0,0 < S< o0, and let T: MM+ — IN* satisfies condition§)-(iii) . Assume
that u w € W(0, ) and ve W(0, ) be such that YX) < oo for all x > 0 holds. Then inequalit{2.1)
holds if and only if both

(4.1) ||T{‘Y[VS/5V1’S/5;S/6]}2/5(f)||ﬁ’w’(0’w) < C”f||sw[vs/ﬁvlfs/ﬁ;s/é],(o,oo), fe WT,

where0 < § < s and
(s/8)

UV 57609 = f Ve y) STV (v, (x> 0),
X

0 =T
\P[Vs/dvl—s/é; s/6](X) ~ (f V—(S/6)’V)(S/é) , (x>0)
X
and(2.3) hold.

Proof. Inequality €.1) is equivalent to

1/611° 5 !
(4.2) [T, oy = S lssne. f et
By Theorem<.2, (4.2) holds if and only if
o \1/6)¢
(43) {T (f h) } < C6||h||S/6,VS/JV1_S/6’(O’OO)’ he §Ut+,
" /6. (0.09)
and @.3) hold. By Theoren8.4, (4.3) is equivalent to
0
1/6 1
(4.4) H{T{‘I’[VS/"Vl‘S’é?S/ﬁ]}2(f )} 3/6:,(0.0) = C§Hf||5/5’¢[V5’5"1‘S”?5/5]3(0300)’ Fed,
with
w[VS/‘SVl_S/‘S . s/6] ~ (Vl—(S/ﬁ)’ — sy (Oo))—(S/é)//((5/6)/+1)V—(S/6)/V
\I_,[Vs/évl—s/é; 5/6] ~ (Vl—(s/é)’ _ Vl—(s/rS)/ (Oo))l/((s/é)#l).
Note that ¢.4) is equivalent to4.1), and this completes the proof. ]

To state the next statements we need the following notations
00 1/3
Vi(X) := ( f V‘zv) , (x> 0).
X
The following statement holds true.

Corollary 4.2. Let0O < 8 < 00,0 < S< o0, and let T: M* — M+ satisfies condition§)-(iii) . Assume
that u w € “W(0, o) and ve W(0, c0) be such that YX) < co for all x > 0 holds. Then inequalit{2.1)
holds if and only if both

(4-5) ||T{‘P[V2\r1;2]}4/5(f)”B’W’(O’OO) < CHfHS,w[VZV'l;Z],(O,oo), fe ng’
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where
YIVAVE 2100 ~ (Vi - V)29, (x> 0),
PIVA 2)(%) & Va(x), (x> 0),
and(2.3) hold.
Proof. The statement follows by Theorefnl with § = s/2. |

The following "dual” statement also holds true and can be/@doanalogously.

Theorem 4.3. Let0O < 8 < 0,0 < S< o0, and let T: MM+ — IN* satisfies condition§)-(iii) . Assume
that u w € W(0, ) and ve W(0, ) be such that (x) < « for all x > 0 holds. Then inequalit{2.5)
holds if and only if both

(4.6) HT ]}2/5(f) fem,

: < cllf]l /5, 1-/s - ,
{o[veovt-sos/s 5.,(0,00) so[vEvi-stis/o] (0.00)

where0 < § < s and
(s/8)

X T (s/ey+1 ,
oIV 516109 = [ Vv TV v, (¢ 0)

X %
cD[Vf/ﬁvl—S/ﬁ; S/5](X) ~ (f V*—(s/(s)/v) (s/6) 1, (X S O),
0
and(2.3) hold.

To state the next statement we need the following notations:

Vi(X) = ( fo Xv;Zv)m, (x> 0).

Corollary 4.4. LetO < B8 < 00,0 < S< o0, and let T: M* — M+ satisfies condition§)-(iii) . Assume
that u w € W(0, ) and ve W(0, ) be such that (X) < oo for all x > 0 holds. Then inequalit{2.5)
holds if and only if both

(4.7) fem,

RPEC EL LB
where

SV 2](X) = (Vi - VL2 (0v(X), (x> 0),
O[VA L 2](x) = Vi(x), (x> 0),

and(2.3) hold.

5. THE WEIGHTED HARDY-TYPE INEQUALITIES ON THE CONES OF MONOTONE FUNCTIONS
In this section we consider weighted Hardy inequalitiesh@ndones of monotone functions.
Note that inequality
(5.1) IHu(Fllqw0.00) < Cll Fllpy0.)s T € Wi

was considered by many authors and there exist severalotbarations of this inequality (see, survey

paper [L1], [4], [15], [10], and [27]).
Using change of variables= 1/t, we can easily obtain full characterization of the weightesjuality

(5-2) ||H:(f)||q,w,(0,oo) < CHpr,v,(O.oo), fe gﬁT-
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Our aim in this section is to give the characterization ofitfegjualities

(5.3) IHu(F)llgw,0.00) < Cllfllpy,000), T € m'
and
(5.4) IH: (F)llqu0.00) < Cll Fllpy0e)s T € ML

Inequality 6.3) was considered in3[1] in the case when k p, q < o, and recently, completely
characterized in49, 30] and [27] in the case O< p, q < o. It is worth to mention that in the most
difficult case when & g < p < 1, the characterization obtained i&v] Theorem 3.12] involves additional
function(x) := W-1(4W(X)), whereW-1(t) := inf{s > 0 : W(s) = t} is the generalized inverse function
of W. Theorenb.3give us a another characterization 6f3) and its proof does not use the discretization
technique.

Recall the following complete characterization of the vineggl Hardy inequality on the cone of non-
increasing functions.

Theorem 5.1 ([27], Theorems 2.5, 3.15, 3.16)et0 < g, p < . Then inequality5.1) with the best
constant ¢ holds if and only if:
()1 < p<qg<o,andinthis case e Ay + A;, Where

Ao = Stilop( fot U9(r)w(r) dT)%V_Tl)(t),

A= st>uopW§ (t)( fot(tjg;)p/v(r) dr)é;

(i) g< p<oandl < p < oo, and in this case & By + By, where

By : = ( fo ) v—%(t)( fo t U(DW(D) dT)LpUq(t)W(t) dt)

o= [ Wil [ (S0 vyar) wo o)

(i) g < p <1, andin this case & By + C;, where
00 p r T
Cp:= ( f (ess supU—(T))pW,f(t)w(t) dt)
0o \ @y V()

(iv) p<g<ooand p< 1, and in this case e Dy, where

1
T
)

1
;
1

Do := supV‘%(t)( fom U9(min{r, t})w(7) dT)a;

>0
(v) p< land g= oo, and in this case & Eg, where

Eo := ess Surb/_%'(t)( ess supJ (min(z, t})W(T))i
t>0 0

(vi) 1 < p < o0 and q= o0, and in this case & F,, where

Fo = ess supv(t)( fo t( fT t uly)vV=(y) dy)p/v(r) dr)%;

t>0
(vil) p=coand0 < g < o0, and in this case e Gy, where

Go = ( fow ( fo ess :Lgﬁ(gz V(1) )qw(t) dt)a /
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(viii) p=q = o, and in this case e Hy, where

t
Ho := ess su;éf u(y) dy )W(t).
>0 0 €SSSUR ) V(1)

The following theorem holds true.

Theorem 5.2. Let0 < g, p < . Then inequality5.2) with the best constant ¢ holds if and only if:
(i) 1 < p<g< oo, andin this case e Aj + A], where

A, = sup( f W) df)%v; 5(1).

>0 t
. (U, ()" v
A*::squt(f( )VTdT);
1= SUp (t) Vo (7)
(i) g< p<eoandl < p < oo, andin this case & Bj + Bj, where

1
v
’

Bg::( fo VA L"(t)( ft ) Uf(T)W(T)dT)LpUS(t)W(t)dt)

= [ o [ (49 o wo]

(i) g < p <1, andin this case e B + C}, where

Cii= (fom(ess su Ui)ll)))%wﬁ(t)w(t)dt)%;

ye(t,e0)
(iv) p<g< oo and p< 1, and in this case e D}, where

1 00 1
Dg = supV. p(t)(f Ud(maxr, t)w(r) dr)q.
t>0 0
(v) p< land g= oo, and in this case & Eg, where

E; :=ess suM—%’ (t)( ess supJ.(maxr, t})w(r));

>0 ™0
(vi) 1 < p< o and g= o0, and in this case & F;, where

Fo:=ess supv(t)( ftm(ftT u(y)V;l(y)dy)p,v(T) dT)%;

t>0
(vii) p= o0 and0 < g < o0, and in this case e G}, where

Go = ( fom ( ft ) ess suu(:g(j ::) V(1) )qw(t) dt)a ;

(viii) p=q = o0, and in this case & H;, where

Hg = ess su;éfm u(y) dy )W(t).

>0 €SS SURy, ) V(7)

Proof. By change of variables = 1/t, it is easy to see that inequality.@) holds if and only if

IHpa()l g0 < Clfllpzoogs  f M

021 50w 0 Y2 0

holds, where
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when 0< p< o0,0< q< o, and

o024 0w 022} o

when 0< p < o0, q = o0, and

0 = 7)™ = w(7)3) 70 = (g) t>0
u(t):u(%)tlz, \7v(t):w( ) (t)_v( ) t>0.

Using Theorenb.1, and then applying substitution of variables mentionedsatibree times, we get
the statement. 0

whenp = g = o, and

The following theorem is true.

Theorem 5.3. Let0 < g < o0 and0 < p < co. Assume that,uv € ‘W(0, ) and ve W(0, o) be such
that V,(X) < oo for all x > 0 holds. Recall that

X 1/3
Vi(X) := ( f V;zv) , (x> 0).
0
Denote by

Ui(x) = fo u[vilr)dt, (x> 0).

Then inequality5.3) with the best constant ¢ holds if and only if:
()1 < p<q< o, andin this case

¢~ Ao+ A + [IHuUD)llgw0.00) /I Ll pv0.00)»

where

Ao = sup f t[Ui]q(T)W(T) dr) ViT 40,

TJ|H

A= supwq (t) f (U317 @)V # P @)V ()W) dr) :
(i) g< p<wandl < p < oo, and in this case
c~ By + By + [[Hu(D)llqw 0.0/ Ul pv0.00)-
where
= ([ vt [ wirewe ) uiowna)

1

00 ' t L T
B, : :( f Wf(t)( f [U1P (O)[V; T E P () 2A()v(r) dr)pw(t)dt) :
0 0
(i) g < p <1, andin this case
¢~ By + Ci + IHu(Dllgw 0.0/ 11l py,(0.0)s

where

Ci = (fom(ei[scj?]ug%) Wj)(t)w(t)dt)%;
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(iv) p<g<oand0< p <1 andin this case
¢ = Do + IHu(Dllgw 0./ Ulpu0.0)s
where .
Dy = suqvi*]‘%(t)( foo[Ui]q(min{T,t})W(T) dT)a;
(V) p<landg= oo, andin thit;Ocase i

¢ = Eo + IHu)llqw0.00)/ 111l pav0.00)»

where
Eo = ess sub/f]‘%(t)( ess supu;](min{r, t})w(r));
t>0

>0

(vi) 1 < p< o and g= o0, and in this case
¢ = Fo + IHu(Dllqw0.0)/ 1 llpv 0005

where
1

E, = ess Su;SN(t)( fot(f u(y)[Vi‘]A_Tp(y) dy)p/[Vi‘]_z(T)V,fz(T)V(T) dT)F.

t>0

Proof. By Corollary4.4 applied withg = q, s= pandT = H,, inequality 6.3) holds if and only if both

(5.5) IHevzgo (| 000y < S Flpivivar2uooss € ML,
and
(5.6) IHu(Dllgw(0.00) < CllLpv,(0.00)
hold.
Now the statement follows by applying Theorém. O

Theorem 5.4. Let0 < g < oo and0 < p < oo. Recall that

Vi(X) = (foo V‘ZV)E, (x> 0).
Denote by
Up(x) = f Tuvimdt (x> 0).

Then inequality(5.4) with the best constant ¢ holds if and only if:
()1 < p<q< o, andin this case

c~ A+ A + IH (Dllqw 0.0/ 111l py0.00)s

where

Ay: = sup( f T UiEw) dT)%Vl_ (1),

t>0 t

3=

p

A; : = supWws (t)( f UY @V, @ PV 2()v(r) df) ;
>0 t
(i) g< p<oandl < p < oo, and in this case

¢~ By + B + [|H(Dllqw 0.0/ 1 Ll py0.00)s



WEIGHTED ITERATED HARDY-TYPE INEQUALITIES 21

where

1
T
)

001
o *

::( fo wvﬁ(t)( ft " UEw) dT)Lpr(t)w(t)dt)

= fo i w o) ft T UP (VPP V2l dr)’

(i) g < p <1, andin this case

¢~ By + C; + IH:(Dllgw.c0)/11 Ul 0.0y

1
r
)

B

= %

w(t) dt)

where
p

C;:= (fom (ess su Ul(T))L‘)W%'(t)w(t)dt)

7€(t,00) 1(7)
(iv) p<g< o and p< 1, and in this case

¢ = B} + [IH: (Dllquw0.00)/ 11 e 0.00)

1
T
)

where

Qal-

~ _1 o0
Dj := supV, p(t)(f Uf(max{s,t})w(s)ds) .
>0 0
(v) p< land g= oo, and in this case
¢ = Eo + IHi(Dllgw )/ 1 Ulpv 005

where .
E; ;= esssup, ° (t)( ess supJ;(maxr, t})w(r));
t>0

>0

(vi) 1 < p < 0 and q= oo, and in this case

¢ = Fo + [IHi(Dllgw.©.e0)/ I Ulp.v.0.00)

where

|

7

£y i=esssum [ ([ uovim) o) veov oun ar)

t

ke

Proof. By change of variables = 1/t, it is easy to see that inequality.@) holds if and only if

[Hpa()ly 00 < Cllfllozoe,  f e

o022 0w w0 1)) 10

when 0< p< o0,0< < o, and

o0-u2) 0w 10 () 1o

when 0< p < o0, q = o0, and

o0-u2 ) 5022 w0-(3) 1o

fi(t) = u(%)tl2 W(t) = vv(%) Ut) = v(%) t>0.

Using Theoren®.3, and then applying substitution of variables mentionedsalibree times, we get
the statement. |

holds, where

whenp = g = o0, and
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6. THE WEIGHTED NORM INEQUALITIES FOR ITERATED HARDY-TYPE OPERATORS

In this section we give complete characterization of inditjga (1.5) - (1.6) and (.7) - (1.8).

Using results obtained in the previous section we can retheceharacterization of inequality.§) to
the weighted Hardy inequality on the cones of non-increpginctions.

The following theorem is true.

Theorem 6.1. LetO < p < 00,0 < < o0 andl < s< co. Assume that,uv € “W(0, o0) and ve “W(0, o)
be such tha{3.1) holds. Recall that

X 1
D[v; s|(X) = (f vl‘g(t)dt)m, x> 0.
0
Denote by

Oy (1) = f LDV SP(x) dx = f ) u(x)( f le‘g(t)dt);_fldx >0,
0 0 0

Then inequality(1.5) with the best constant &olds if and only if:
() p<s<Q< o,andinthis casec~ A1 + As2, Where

Ao = sup( [ (@) dr) ol 90,

t>0

e = sup o [ (ot ) g g an)

(i) g< s< o and p< s, and in this case;cx By; + By, Where

Bii:= (f:o D[V, S]qiS(t)( fo‘t[q)l]%(T)W(T) dT)}iq[(Dl]%(t)w(t) dt)%,
Bra: = (fo‘” W (t)( fot(q)g;l—g]zﬂ)%pcb[v; sl(7) df)%w(t)dt)%;

(i) g < s< p, and in this case;c~ By ; + Cy, where

C,: = ( fo ) (ei?ozug%)ng,%(t)w(t) dt)

(iv) s< g < o and s< p, and in this case;c= D;, where

5q
sq

D: = supofv; g 40 [ [@:](minir.thwer )
t>0 0
(v) s< p and g= o, and in this case= E;, where

E; := esssu@[v; s]‘%(t)( ess supP;(min{r, t})W(T))_p ;

t>0 >0

(vi) p < sand g= o, and in this casec= F1, where

_s_ sp

F1 = ess suput) fo t ( f U)ol 976) dy) " olv; ()

t>0

Proof. By Theorem3.1 (with the operatoil = H,,), ineqality (1.5 holds if and only if

X
f fud[v; s)*°
0

holds. Moreoverg; ~ C;. It remains to apply Theorefm L O

(6.1) ’

< Cf 1 flls/p.grvis.000)> T € m
a/p.w,(0,c0)
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We have the following statement when- 1.

Theorem 6.2. LetO < p < o0 and0 < g < oo. Assume that,uv € ‘W(0, ) and ve W(0, o) be such
that V(x) < o for all x > 0. Denote by

Vy(1) 1= fOT u(x)V3P(x)dx, = > 0.

Hp,u( fox h)

with the best constant holds if and only if:
(i) p<1<qg<co,andinthis caseic~ A}, + A7 ,, where

Then inequality

1
<C ||h||1’v—l’(0’w), heMm*
W, (0,00)

(6.2) ‘

Ay = supf [ v owe o) Vi)

1-p

o= syl [[ (5] vrer)

(i) g< 1and p< 1, and in this casec~ B}, + B}, where

8= ( [ v [ Vb ) Nl omo d)

o= f ) wof fot(\\/f((:)) v dT)%(%W(t)dt)l%ﬁ;

(i) g < 1< p, and in this caseic~ By, + C}, where

14
q

Ci:= (fm(ess suM)ﬁWﬁ(t)w(t)dt) ;
0

@y  V(7)
(iv) 1 < g< oo andl < p, and in this casejc= D}, where

) 1
D! = supv-l(t)( f [V5] % (min(z, thw() dr)q;
>0 0
(v) 1 < pand g= o, and in this caselc= E}, where

Ei :=ess sup/‘l(t)( ess sup/o(min{r, t})W(T))_p :

t>0 0

(vi) p < 1and g= oo, and in this caseic= F}, where

1 1p
= P

Fi:.= essosulw(t)%'( fo t( fT t u(y)VZp‘l(ydy)) "V(1) dr)

Proof. By Theorem3.11applied to the operatdi,, inequality 6.2) with the best constart holds if
< CPIIfllypyoe) T € !

and only if inequality
X
f fV2Pu
0 a/p-w,(0,e0)

holds. Moreoverg; ~ C;. In order to complete the proof, it remains to apply TheoEein ]

(6.3) '

The following theorems give us another more simpler andrahtaethod for characterization of in-
equality (L.6), which is diferent from that one worked out in§] and [L9].
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Theorem 6.3. LetO < p < 00,0 < < o0 andl < s< co. Assume that,uv € ‘W(0, o) and ve “W(0, )
be such tha{3.13 holds. Denote by

D,(7) = foT u(x)(‘I’[v; s| - O[P[v; s|%[v; 95 S])zp(x) dx 7> 0.
Recall that

Y[v; s|(X) = ( f ) vl-g(t)dt)g_”, x>0,
S[PLV; %[V, 5% s](x)

z{fox(ft V) o “Wdtf i(fwvl-g) TVE(x), x>0,

X 1+s’ Ls’
O[Y[V: SV 9+ s|(%) ~{f (f ) v g(t)dt} x> 0.
0 t
Then inequality{1.6) with the best constant dolds if and only if:

(i) p < s<g< oo, andin this case
Co ~ Azt + Ao + Il Ulpwiv:gzeu 0.0 lgw,0.00) /1 Uls yfv:),(0,00)

where

s = sup{ [ ot omear) orwt s s

Poy: = stgopwf(t)( fo t( q)[q,siii?s]@) oS sl dr)”

(i) g< s< oo and p< s, and in this case

Co ~ Ba1 + Boo + [l Ulpwpv:g2eu 0.0 lgw,0.00) /1 Uls yfv:g),(0,00)»

where
5q

o= ([ atwus gt [eateme o) waiou )"
As=p) sq

oo [0 [ i) e oo

(i) g < s< p, and in this case

Co ~ Ba1 + Co + [l Ulp.wpv:s2eu, 0.0 lgw,0.00) / 1 siv; g, (0,00)

where

sq

C:= ( fo w(erse?of)ur&) [\1[185155(2] ( ))%Wfiq (t)w(t)dt) K ;

(iv) s< g < o and s< p, and in this case

C2 = D2 + [[I1 Ml wpv:g2eu 0.0 lgw,0.00) /1 Ul yfv:1,(0,00)
where 1
D, = sup®[¥y'; s]‘%(t)(f [@] 7 (min{r, thw(r) dr)q;
0

t>0
(v) s< pand g= o, and in this case

Co = Ex + [[I1Ulpwpv: 920000 lgw.0,.00) / 1 Lls v g, 0,00)»
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where
1

E, := ess su@[¥sy’ s, S]_%(t)( ess supbz(minfr, t})W(T))E i
>0 >0

(vi) p < sand g= ~, and in this case

Co = Fo + [[I1Ulpwpv: 920000 lgw.0.00) / 1 Uls v g, (0,00)»

where

_S_ sPp

F = esssup) [ [ [ wpores s o)) obvuts s o)

Proof. By Corollary 3.5 (applied toH, with 6 = 1), inequality (..6) with the best constart, holds if
and only if both

X
(6-4) Hp,‘P[v;s]ZPu (f h) <C1 ||h||s,‘P[v;s]Sw[v;s]lfs,(O,oo), he gﬁJr,
0 qw,(0.0)

and
(6-5) ””1”p,‘P[v;s]ZPu,(O,t)”q,w,(O,oo) < C2,2||1||S,l//[V;S],(O,OO)’
hold.

Moreover,c; ~ Co1 + [ll| 2 pwv;g20u 0 lqw.0.00)/ 1 Ul s pfvis].0.00) -

Now the statement follows by Theoreril. |

We have the following statement when- 1.

Theorem 6.4. LetO < p < o0 and0 < g < oo. Assume that,uv € “W(0, ) and ve W(0, o0) be such
that V.(X) < o for all x > 0. Denote by

V;(r) = fOT u(xX){V. - [V;14%P(x)dx, 7 > 0.
Recall that ) "
Vi(X) 1= ( fo V-2(H)\(t) dt) . (x>0).

Hp,u( fxw h)

with the best constangdiolds if and only if:
() p< 1< < ,andinthis case

Then inequality

(6.6) ' < C% IhllLv-1 0,000 N E m*

g.w,(0,00)

1 1 1
G ~ Ags + Ao+ 1L,y 0l 0. /N1 110000

where
t 1/q
A= supf [ V1w ar) Vi1,

A= supwio [ (&8)_{\’ M &)

(i) g< 1and p< 1, and in this case

1 pl 1
G~ By + By, + ||||1||p,vfpu,(o,t)”q,w,(o,oo)/ 12ll1.v.(0.00)»
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where
q
-

8= ([ v | Vol ew dr) v Ow) dt)l_‘*q,
%«1-p) 1q

.= ( [ woof [ | (&E;)_{v VI EV@ dr) " w dt)

(i) g< 1< p, and in this case

1._pl 1
G~ BZ,l + Cz + “”1”p,vfpu,(o,t)”q,W,(o,oo)/ ”1”1,%(0,00)’
where
1 1-
00 V* o (T % q 1-q
cL: :( f (esssuM) qu‘q(t)w(t)dt) T
o \ oy Vi)

(iv) 1 <g<coandl< p, and in this case

1 _nl
¢ = Dz + 185y 00 llqu 0.0/ 100000

where

1

DL = suqv;]—l(t)( f " IvaT (minie, thw(z) dr)a;
t>0 0
(v) 1 < p and g= oo, and in this case

1_p1
G=E+ ||Hl”p,pru,(O,t)”q’W’(o’oo)/ 1 2l1,v,(0,00)»

where

1

E; :=ess su[)/i‘]‘l(t)( ess sufpV;](min{r, t})w(r))ﬁ ;
t>0

0
(vi) p < 1land g= oo, and in this case
1 1
G2 = F3 + 12l v20y 0 lq 0.0y /11 110000

where

= essoum0| fot (J OGS dy)l_lp{V* VDOV dr)l_pp.

t>0

Proof. By Corollary 3.23applied to the operatdt,,, inequality 6.6) with the best constami% holds if
and only if both

X
(6.7) f (V. - [ViP¥Puf < S5y Ifllaypyv. pvip2v e T € M,
0 a/p.w,(0,00)
and
(6.8) ”||1||p,vfpu,(o,t)||q,w,(o,oo) < Co2llL[1,v,(0,00)»

hold. Moreovergk ~ c,; + ||||1||p’v*zpu’(o’t)||qW(Ow)/||1||1,V,(O,OO). Applying Theorenb.1we obtain the state-
ment. O

For the sake of completeness we give the characterizatiansqualities of (.7) and (L.8) here.
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Theorem 6.5. LetO < p < 00,0 < < o0 andl < s< co. Assume that,uv € ‘W(0, o) and ve “W(0, )
be such tha{3.13 holds. Recall that

W[v; s|(X) = ( f vl‘g(t)dt)m, x> 0.
X
Denote by

ZP

W) = f T WPV §2°(x) dx = f ) u(x)( f v g(t)dt) dx > 0.

Then inequality(1.7) with the best constangdolds if and only if:
() p<s<Q< o,andinthis caseg£~ Az + Az, Where

Agi:= sup( ft I (W) dr)a‘P[V; (),

t>0

oz = supwi [ () v s ar)

(i) g< s< oo and p< s, and in this casescy Bg; + Bso, Where

Bas: = fo "y, S f w1 W) dr)ﬁ%ﬁ(t)w(t)dt)%,

q( p)

(T & ¥ Wi(r) |5 P(s-d ®
By, : = ( fo W (t)( ft (—\P[V; 5 (T)) uIv; 9(7) dT) W(t)dt)
(i) g < s< p, and in this casex~ B, + Cg, where
S [¥4]%(7) k)
Coi=( [ (essoumypy s](ﬂ) LCACE N
(iv) s< g < o and s< p, and in this casex= D3, where
D2 = suptly; § 40 [ vl dmaxn ywin) o)
(v) s< p and g= o, and in this case£= E3, where
Es := esssup’[v; s ‘%(t)( ess sup¥;(maxr, t})w(r))ﬁ;

t>0 >0

(vi) p < sand g= o0, and in this caseg£= F3, where

Fs = ess supv(t)( ft w( ft ¥V - 1(y)oly) ylv; SI(7) dr)

t>0

Proof. By change of variables = 1/t, it is easy to see that inequality.¢) holds if and only if
< C|Ihllsg,(0,00)

bl [,
R R

when 0< g < 0, and
00 - f2)% 00 -2 5023 -

holds, where

whenq = .
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Using Theoren®6.1, and then applying substitution of variables mentionedsatibree times, we get
the statement. ]

Theorem 6.6. LetO < p < o0 and0 < g < co. Assume that,uv € ‘W(0, ) and ve W(0, o) be such
that V,(X) < o for all x > 0. Denote by

V(1) = fw u(x)V*(x)dx, = > 0.

Hiu f i h)

with the best constangdiolds if and only if:
(i) p<1<qg<oco,andinthis casel~ Ay, + A} ,, where

Then inequality

(6.9) '

< C3lINlyy-1 (000, N €M
g,w,(0,00)

Ay = sup{ [ VT )V,

A, = st>quW% (t)( ft ) (\\fg)l—lpv(r) dr)

(i) g < 1and p< 1, and in this case~ B, + By, where

1p
P

o, = ([ Vo [Tieme o) “vatowoa)

BL,:= ( fo W (t)( ft ) (Y/fg)rl"v(f) d‘r)qﬁ(%w(t) dt)l;qq;

(i) g < 1< p, and in this casec~ B}, + C3, where

cl:= ( f w(ess suM)ﬁwﬁ (t)w(t)dt)
0

Te(t,00) V*(T)
(iv) 1 < g< oo andl < p, and in this caselc= D3, where

19
q

D3 := stuopV; 1(t)( fo oo[V;‘]%(max{r, thHw(r) dr)é;
(v) 1 < p and g= o, and in this caseg= E3, where

El:= estsosup/*‘ 1(t)(ess c;sup/g*(max{f,t})w(r))%';
(vi) p < 1and g= oo, and in this case= F3, where

1
1-

Fyi=esssum®?( [ ( [ uopvionay) v dr)l_pp.

Proof. By change of variables = 1/t, it is easy to see that inequalit§.9) holds if and only if
< C||h||1,\7-1,(o,oo), heMm*

X
0 0, W,(0,00)

fi(t) = u(%)é W(t) = vv(%)tlz V(t) = fotv()%)y—lz dy, t> 0,

holds, where
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Gi(t) = u(%)tl2 W(t) = w(%) V(t) = fot v()%)y—l2 dy, t> 0,
whenq = .

Applying Theoren6.2, and then using substitution of variables mentioned abloreettimes, we get
the statement. |

when 0< g < o0, and

Theorem 6.7. LetO < p < 00,0 < g < 0 andl < s< co. Assume that,uv € “W(0, o0) and ve “W(0, )
be such tha{3.1) holds. Denote by

Wo(r) = f ) u(x)((D[v; 8] - P[D[v; §°[V; 5 s])zp(x) dx 7> 0.
Recall that
O[V; s|(X) = ( fo le‘g(t)dt)ﬁl, x> 0.
YOV, SI°p[v; §]*%; s](X)

z{ f ( fo vl‘g)_%vl‘g(t)dt}_%( fo ' ) B “(%).

wiotv st s 500+ [( [ve) Tvroa)”

Then inequality(1.8) with the best constant,&olds if and only if:
(i) p < s< Q< oo, andin this case

Cs ~ Ag1 + Ag2 + |II1L popvg2eu,too) g, 0.00) /1 Ul s gy, 0.00)5

where

A= s [ Leliome o) iora 540

il

% sl(nydr) "

Aaz = S{Eopwé (t)( ftw (‘I’[(I)Siig,) s|(7) )yip(p[(b

(i) g< s< oo and p< s, and in this case

Cs ~ Ba1 + Bao + |1 popv;g2eu,too) lgw,0.00) /1 Ul gv;],0.00)5

where

= ([ wtorg s [ reieme o) atomo )

= ([ WO [ (grpis ) o o) wod)

(i) g < s< p, and in this case

Cs~ By1+Cy+ 1Ll p,00pv: 51200, (t,00) e (0.00) / 1 Ll s gv; 9. (0,00)

where
Coi= ([, (esssuRrpgugs a) WO
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(iv) s< g < o and s< p, and in this case

Cs = Dy + 1 Ul p.opv:sj20u,t.00) lqwi(0,00) / 1 U s 67v; 5, 0,00)
where N )
D« = sup¥(0%6 o [ [v¥(maxe. ywer) o)
(v) s< pand g= o, and itr>10this case i

Cy = E4 + ””l”p,d>[v;s]29u,(t,oo)||q,w,(0,oo)/||1||S,¢[V;s],(0,oo),

where )

4 1= ess su[0%"; s| (0 ess suppa(maxz. thw(r))

>0 0
(vi) p < sand g= oo, and in this case

Cs = Fa + 1l p.0pv:g20u,t.00) lqawi(0,00) / 1 s 6fv: 1, (0,00)

where

s-p

Fo=esssup [ ( [ uopriors o o) o) uionss s )

t>0

Proof. Obviously, inequality 1.8) holds if and only if

el [,
o0-u2 ) 022 0 (Y3

w0 - of2)2 50-u(2) 50 3] -0
whenq = co.

Using Theoren6.3, and then applying substitution of variables mentionedsalibree times, we get
the statement. |

< C|Ihllsg,(0,00)

holds, where

when 0< g < o0, and

Theorem 6.8. LetO < p < oo and0 < q < oo. Assume that,uv € “W(0, ) and ve W(0, o0) be such
that V(X) < oo for all x > 0. Recall that

Vi(X) = (fw V‘zv)é, (x> 0).
Denote by
Vi(1) = f u(x){V - Va2P(x)dx, 7 > 0.

Mo fo x h)

with the best constangdiolds if and only if:
() p< 1< < ,andinthis case

Then inequality

(6.10) ’

1
< Gy lINllLv-1,0,00)»
q,w,(0,00)

1 1 1
C4 ~ A4,1 + A4,2 + ||||1||p,V2pU,(t,oo)||C|,W,(0,00)/||1||1,V,(0,00)?
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where

Ay =sup( [ Vo) dr)a[vll-l(t),

AL, - = supWi(o) ft (xf;) V- VAl (V) dr)l_”p;

(i) g< 1and p< 1, and in this case

1 1 1
C4 ~ B4,1 + B4,2 + ||||1||p,VZPU,(t,oo)||C|,W,(0,oo)/||1||1,V,(0,oo)’

where
1q
q

o= ([ v [ vabewe) ) Viuoa)
q(l p)

B}Lz::( fo wwﬁ(t)( ft (&8) V- Va1 2(@v() dr) W(t)dt)

(i) g< 1< p, andin this case

1 1 1
C4 ~ B4,1 + C4 + ||||1||p,VZPu,(t,oo)||q,w,(0,oo)/||1||l,v,(0,c>o),
where

Ci D= (fm(ess sumyiwl q(t)w(t)dt)Tq;
0

o) Va(T)
(iv) 1 <g< o andl< p, and in this case
Cs = D + [ll1Ulpv2oy, t.c0)lquw.(0.00) /11 Ll 0.00)-

where
1

D} := supvy () f [Vl (maxtz, tw(r) dr)
>0 0
(v) 1 < p and g= o, and in this case

Cs = E4 + 12l pv2pu ool (0.00) /11 L], (0.00)»
where .
E; = estsosupll‘ 1(t)(ess C?U@Vg](maX{T,t})W(T))B;
> ™
(vi) p< 1and q= oo, and in this case

1 1
C; = Fy + [l pv2eu .00 lgw.(0.00) /N1 Ul v, 0.00)

where

Fl:=ess supv(t)%(fm(f u(y)V"(y) dy)li V- Vi 2(0)v(7) dT)

t>0 t

Proof. Obviously, inequality§.10) holds if and only if
S C”h”l’\"'/*—l’(o’oo), h € ﬁRJr

o [ )]
fi(t) = u(l) L () = w(l)t12 ,(t) = ftwv(%/)y—lz dy, t> 0,

holds, where

1-

o

2]

1-p
p

31
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when 0< g < o, and
(t) = u(%)tl2 W(t) = w{%) V.(t) = ftm V(y_l/)% dy, t >0,
whenq = co.

Applying Theoren6.4, and then using substitution of variables mentioned abloreettimes, we get
the statement. 0

Remark6.9. It is worth to mention that Theorer.3 - 6.8 can be proved by reducing corresponding
iterated inequality to the cone of monotone functions. Retance: inequalityl( 7) with the best constant
¢z holds if and only if inequality

’ f fu[v; g
0

holds, and the statement of Theorérbimmediately follows by Theorer.2

< Cg ||f||S/p,¢/[V;S],(O,c>o), f e
q/p,w,(0,00)

REFERENCES

[1] M. I. Aguilar Cafiestro, P. Ortega Salvador, and C. Ramiforreblanca\Weighted bilinear Hardy inequalitied. Math.
Anal. Appl. 387 (2012), no. 1, 320-334, DOI 10.1041.fmaa.2011.08.078. MR2845753

[2] K. F. AndersenWeighted inequalities for the Stieltjes transformation &filbert’'s double seriesProc. Roy. Soc. Edin-
burgh Sect. A86 (1980), no. 1-2, 75-84, DOI 10.10/50308210500012014. MR580247 (82h:26020)

[3] M. A. Arifio and B. Muckenhouptiviaximal functions on classical Lorentz spaces and Hardyegjuality with weights
for nonincreasing functionsirans. Amer. Math. So&20 (1990), no. 2, 727-735, DOI 10.23@D01699. MR989570
(90k:42034)

[4] G. Bennett and K.- G. Grosse-Erdmanieighted Hardy inequalities for decreasing sequences anctibns Math.
Ann. 334 (2006), no. 3, 489-531, DOI 10.10800208-005-0678-7. MR2207873 (2006m:26038)

[5] D. W. Boyd, The Hilbert transform on rearrangement-invariant spac€anad. J. Mathl19 (1967), 599-616.
MR0212512 (35 #3383)

[6] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, and R. CNustafayevBoundedness of the fractional maximal operator
in local Morrey-type space€omplex Var. Elliptic Equ55 (2010), no. 8-10, 739-758. MR2674862 (2011f:42015)

[7] V.I. Burenkov, A. Gogatishvili, V.S. Guliyev, and R.ChlustafayevBoundedness of the Riesz potential in local Morrey-
type spacesPotential Anal35 (2011), no. 1, 67-87. MR2804553 (2012d:42027)

[8] V. I. Burenkov and M. L. GoldmanCalculation of the norm of a positive operator on the cone ohotone functions
Trudy Mat. Inst. Steklov210 (1995), no. Teor. Funktsii i Dier. Uravn., 65-89 (Russian). In honor of the ninetieth
birthday of Academician S. M. Nikolskii (Russian). MR14ZB397m:47038)

[9] V.I. Burenkov and R. OinaroWNecessary and gficient conditions for boundedness of the Hardy-type opefaton a
weighted Lebesgue space to a Morrey-type spilath. Inequal. Appl16 (2013), no. 1, 1-19. MR3060376

[10] M. Carro, A. Gogatishvili, J. Martin, and L. Pickyeighted inequalities involving two Hardy operators witipcations
to embeddings of function spacdsOperator Theor§9 (2008), no. 2, 309-332. MR2411048 (2009f:26024)

[11] M. Carro, L. Pick, J. Soria, and V. D. Stepan®n embeddings between classical Lorentz spddash. Inequal. Appl.
4 (2001), no. 3, 397-428, DOI 10.71/63a-04-37. MR1841071 (2002d:46026)

[12] M. J. Carro and J. Sori®oundedness of some integral operat@anad. J. Math45 (1993), no. 6, 1155-1166, DOI
10.4153CJIM-1993-064-2. MR1247539 (95d:47064)

[13] W.D. Evans, A. Gogatishvili, and B. Opid,he p-quasiconcave functions and weighted inequaljtlesqualities and
applications, Internat. Ser. Numer. Math., vol. 157, Bélker, Basel, 2009, pp. 121-132. MR2758974 (2012a:26025)

[14] A. Gogatishvili,Discretization and anti-discretization of function spada the proceedings of the The Autumn Confer-
ence Mathematical Society of Japan, September 25-28, 8hibaiversity, Matsue (2002), 63—-72.

[15] A. Gogatishvili, M. Johansson, C. A. Okpoti, and L.-EerBsonCharacterisation of embeddings in Lorentz spa&asl.
Austral. Math. Soc76 (2007), no. 1, 69-92, DOI 10.10450004972700039484. MR2343440 (2008:46017)

[16] A. Gogatishvili, A. Kufner, and L.-E. PerssoBpme new scales of weight characterizations of the clgsé@&a Math.
Hungar.123 (2009), no. 4, 365-377, DOI 10.10870474-009-8132-z. MR2506756 (2010b:42021)

[17] , The weighted Stieltjes inequality and applicatiokiath. Nachr286 (2013), no. 7, 659-668. MR3060837

[18] A. Gogatishvili, R. Ch. Mustafayev, and L.-E. Perss8&ome new iterated Hardy-type inequalitids Funct. Spaces
Appl. (2012), Art. ID 734194, 30. MR3000818

, Some new iterated Hardy-type inequalities: the case §, J. Inequal. Appl., posted on 2013, 29 pp., DOI

10.11861029-242X-2013-515, (to appear in print).

[19]




WEIGHTED ITERATED HARDY-TYPE INEQUALITIES 33

[20] A. Gogatishvili, L.-E. Persson, V. D. Stepanov, and RIMOnN scales of equivalent conditions that characterize the
weighted Stieltjes inequalitypokl. Akad. Nauk447 (2012), no. 1, 13—-14 (Russian); English transl., Dokl. M&k
(2012), no. 3, 738-739. MR3075082

, Some scales of equivalent conditions to characterize tleéj& inequality: the case g p, Math. Nachr287
(2014), no. 2-3, 242-253, DOI 10.10@2ana.201200118. MR3163577

[22] A. Gogatishvili and L. PickPuality principles and reduction theoremigath. Inequal. Appl3 (2000), no. 4, 539-558.
MR1786395 (2002¢:46056)

, A reduction theorem for supremum operatarsComput. Appl. Math208 (2007), no. 1, 270-279. MR2347749
(2009a:26013)

[24] A. Gogatishvili and V. D. Stepanointegral operators on cones of monotone functiddskl. Akad. Nauk446 (2012),
no. 4, 367-370, DOI 10.11331064562412050158 (Russian); English transl., Dokl. Mg&h{2012), no. 2, 650-653.
MR3053208

, Operators are cones of monotone functiobekl. Akad. Nauk445 (2012), no. 6, 618—-621 (Russian); English
transl., Dokl. Math86 (2012), no. 1, 562-565. MR3050526

[26] A. Gogatishviliand V.D. StepanoReduction theorems for operators on the cones of monotowédns J. Math. Anal.
Appl. 405 (2013), no. 1, 156-172, DOI 10.104.fmaa.2013.03.046. MR3053495

[27] A. Gogatishvili and V. D. StepanoReduction theorems for weighted integral inequalities lo& ¢tone of monotone
functions Uspekhi Mat. Naul68 (2013), no. 4(412), 3—68 (Russian, with Russian summanyyjigh transl., Russian
Math. Survey$8 (2013), no. 4, 597-664. MR3154814

[28] M. L. Goldman,Sharp estimates for the norms of Hardy-type operators orsaf quasimonotone functigng. Mat.
Inst. Steklova232 (2001), no. Funkts. Prostran., Garmon. Analff&i Uravn., 115-143 (Russian, with Russian sum-
mary); English transl., Proc. Steklov Inst. Maih(232) (2001), 109-137. MR1851444 (2002m:42019)

, Order-sharp estimates for Hardy-type operators on the soofefunctions with properties of monotonigity

Eurasian Math. 33 (2012), no. 2, 53-84. MR3024120

, Order-sharp estimates for Hardy-type operators on coneguafsimonotone functiong&urasian Math. J2
(2011), no. 3, 143-146. MR2910846

[31] H. P. Heinig and V. D. StepanoWeighted Hardy inequalities for increasing functip@anad. J. Mati5 (1993), no. 1,
104-116, DOI 10.4158JM-1993-006-3. MR1200323 (93:26011)

[32] M. Johansson, V. D. Stepanov, and E. P. Ushakideady inequality with three measures on monotone functibtagh.
Inequal. Appl.11 (2008), no. 3, 393-413, DOI 10.71/83a-11-30. MR2431205 (2010d:26024)

[33] A. Kufnerand L.-E. Perssohyeighted inequalities of Hardy typ@/orld Scientific Publishing Co., Inc., River Edge, NJ,
2003. MR1982932 (2004c:42034)

[34] A. Kufner, L. Maligranda, and L.-E. Perssofhe Hardy inequalityVydavatelsky Servis, Plzen, 2007. About its history
and some related results. MR2351524 (2008j:26001)

[35] S. Lai, Weighted norm inequalities for general operators on monetfunctionsTrans. Amer. Math. So&40 (1993),
no. 2, 811-836, DOI 10.2302154678. MR1132877 (94b:42005)

[36] B. Opic and A. KufnerHardy-type inequalitiesPitman Research Notes in Mathematics Series, vol. 219gmam
Scientific & Technical, Harlow, 1990. MR1069756 (92b:26D28

[37] O. V. PopovaHardy-type inequalities on cones of monotone functi@isirsk. Mat. Zh.53 (2012), no. 1, 187-204,
DOI 10.1134S0037446612010132 (Russian, with Russian summary); Engtnsl., Sib. Math. B3 (2012), no. 1,
152-167. MR2962198

[38] D. V. Prokhorov and V. D. Stepano@n weighted Hardy inequalities in mixed nornfgoc. Steklov Inst. Math283
(2013), 149¢-164.

, Weighted estimates for a class of sublinear operatiookl. Akad. Naukd453 (2013), no. 5, 486—488 (Russian);
English transl., Dokl. Math88 (2013), no. 3, 721-723. MR3203323

[40] E. SawyerBoundedness of classical operators on classical Lorerdzesp Studia Math.96 (1990), no. 2, 145-158.
MR1052631 (91d:26026)

[41] G. SinnamonA note on the Stieltjes transformatidProc. Roy. Soc. Edinburgh Sect.1A0 (1988), no. 1-2, 73-78, DOI
10.1017S0308210500024860. MR963841 (90a:26026)

, Embeddings of concave functions and duals of Lorentz spaugsd. Mat. 46 (2002), no. 2, 489-515.

MR1934367 (2003h:46042)

, Transferring monotonicity in weighted norm inequalitieSollect. Math. 54 (2003), no. 2, 181-216.

MR1995140 (2004m:26031)

, Hardy’s inequality and monotonicityn: Proc. "Function Spaces, férential operators and Nonlinear Analy-
sis” (FSDONA 2004), Acad. Sci., Czech Republic, Milovy, (20, 292-310.

[45] G. Sinnamon and V.D. Stepandvhe weighted Hardy inequality: new proofs and the caseIp J. London Math. Soc.
(2) 54 (1996), no. 1, 89-101, DOI 10.11/4itns/54.1.89. MR1395069 (97e:26021)

[46] V. D. StepanovThe weighted Hardy's inequality for nonincreasing funnforrans. Amer. Math. So838 (1993), no. 1,
173-186, DOI 10.2302154450. MR1097171 (93j:26012)

[21]

(23]

[25]

[29]

[30]

[39]

[42]

[43]

[44]




34 A. GOGATISHVILI AND R.CH.MUSTAFAYEV

, Integral operators on the cone of monotone functjdntondon Math. Soc. (28 (1993), no. 3, 465-487, DOI
10.1112jlms/s2-48.3.465. MR1241782 (94m:26025)

[47]

INSTITUTE OF M ATHEMATICS, ACADEMY OF SCIENCES OF THE CZECH REPUBLIC, ZITNA 25,115 67 Rana 1, Czecu RepusLIC
E-mail addressgogatish@math.cas.cz

DEPARTMENT OF M ATHEMATICS, FAaCcULTY OF SCIENCE AND ARTS, KIRIKKALE UNIVERSITY, 71450 YAHSIHAN, KIRIKKALE, TURKEY
E-mail addressrzamustafayev@gmail . com



	1. Introduction
	2. Notations and Preliminaries
	3. Reduction and equivalence theorems
	3.1. The case 1 < s < 
	3.2. The case s = 1

	4. Equivalence theorems for the weighted inequalities on the cones of monotone functions
	5. The weighted Hardy-type inequalities on the cones of monotone functions
	6. The weighted norm inequalities for iterated Hardy-type operators
	References

