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Abstract Since Kum-G distributions have additional two
parameters, the estimation of parameters becomes an
interesting problem by itself. In this study, we consider
parameter estimation of Kum-Weibull, Kum-Pareto and
Kum-Power distributions by using the maximum likelihood
and the maximum spacing methods. These three distribu-
tions are important in reliability and other applications. The
Kum-Pareto and Kum-Power distributions have parameter-
dependent boundaries, which makes the estimation of
parameters more interesting. We performed simulations for
each of these considered distributions by using the R
software for estimating parameters using the maximum
likelihood and the maximum spacing method. In addition,
an application of these distribution families to real data for
modeling wind speed in a particular location in Turkey is
discussed.

Keywords Kumaraswamy distribution - Maximum
likelihood - Maximum spacing - Parameter estimation -
Simulation

Introduction
In 1980, Kumaraswamy [11] introduced a new distribution

with applications in hydrology. The cumulative distribution
function (cdf) of this new distribution is given by
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F(x)=1—(1-x%" 0<x<l, (1)

where a > 0 and b > 0. Jones [10] discussed properties of
the Kumaraswamy distribution and its similarities with the
beta distribution.

In recent years one can find many papers which gener-
alize this distribution by replacing x with some known
distribution such as normal, Weibull, Pareto, and others
(see, for example [2, 9, 12]). Based on the Kumaraswamy
distribution Cordeiro and Castro [6] introduced a new
generalized family of distributions, denoted in this paper by
Kum-G, and discussed its basic statistical properties and
application to a real data set.

It can be seen that in recent years many authors study
applications and parameter estimation of special Kum-G
distributions. For example, Cordeiro et al. [9] investigate
the Kum-Weibull model and its application to failure data.
Tamandi and Nadarajah [16] discuss parameter estimation
of the Kum-Weibull, Kum-Normal and Kum-Inverse
Gaussian families.

Since Kum-G distributions have additional two param-
eters, the estimation of parameters becomes an interesting
problem by itself. The maximum likelihood method (ML)
is one of the preferred methods for estimating the param-
eters in Kum-G distributions. Tamandi and Nadarajah [16]
consider also the maximum spacing method (MSP) and
compare it with the maximum likelihood (ML) method for
estimating the parameters in some of the Kum-G
distributions.

It is known that in situations like mixtures of distribu-
tions and distributions with a parameter-dependent lower
bound, where the ML estimator leads to inconsistent esti-
mators, the MSP estimator is consistent; see [13]. Moti-
vated by this fact it is natural to consider the MSP estimator
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in parameter estimation for the Kum-Pareto and Kum-
Power distributions.

In this study, we consider parameter estimation of the
Kum-Weibull [6], Kum-Pareto [2] and Kum-Power [12]
families of distributions by using the ML and MSP meth-
ods. Although one may find some studies for the Kum-
Weibull and Kum-Pareto distributions, there is only one
paper dealing with the Kum-Power family of distributions.
We performed simulations for each of the considered
family of distributions. For calculations we used the R
software [14]. In particular, for estimating parameters in
the simulations the optim function in R was applied with
the Nelder—-Mead method. The parameter estimates for the
Weibull distribution were obtained by applying the fitdistr
method in R.

It can be seen from the literature that wind speed can be
modeled by various distributions such as Weibull, Ray-
leigh, gamma, lognormal, beta, Burr, and inverse Gaussian
distributions, among others [17]. For example, Chang [3]
compared the performance of six numerical methods in
estimating Weibull parameters for wind energy application.
He concludes that the maximum likelihood, modified
maximum likelihood and moment methods show better
performance in simulation tests. In this study, we consider
modeling wind speed by using the following generalized
families of distributions: Kum-Weibull and Kum-Power.
We note here that, for example, the Kum-Weibull family of
distributions includes the Weibull and Rayleigh distribu-
tions. It is expected that the flexibility of the two additional
two parameters in the Kum-G family of distributions will
improve the modeling results. The parameter estimates for
the real data were obtained by applying the ga method [15],
which is a genetic algorithm method implemented in R.

Kumaraswamy distributions considered

Cordeiro and Castro [6] introduced a new generalized
family of distributions by replacing x with a continuous
base line distribution G(x) in Kumaraswamy’s distribution:

Flx)=1—{1-G'(n}", ()
fx) = abglx) G (x)(1 - G“(x))"", (3)

where g is the probability density function (pdf) of G and
a>0,b>0.
The cdf of the Kum-Weibull distribution is given by

Flx)=1— (1 - [1 - e*W‘)‘]a)b, (4)

where a > 0,5 > 0, A > 0 and ¢ > 0. We will denote this
distribution by Kum-W(a,b, Z,¢). Some special cases of
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Table 1 Some Kum-W special cases

Distribution A c a b

Kum-exponential

Kum-Rayleigh 2

Exponentiated-Weibull 1
Exponentiated-Rayleigh 2 1
Exponentiated- 1 1

exponential

Weibull 1 1
Rayleigh 2 1 1
Exponential 1 1 1
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Fig. 1 Some Kum-Weibull distributions

the Kum-W(a,b, 1,c) are given in Table 1 [6]. Figure 1
shows some special cases of the density function for this
family.

The cdf of the Kum-Pareto distribution is

14 b
- (4) ] ) , 5)
x
where a > 0, b > 0, § > 0 and k > 0. We will denote this
distribution by Kum-Par(a, b, f, k). Figure 2 shows some

special cases of Kum-Pareto density functions.
The cdf of the Kum-Power distribution is given by

(-]

where a > 0, b > 0, o > 0 and § > 0. We will denote this
distribution by Kum-Pow(a, b, o, ). Figure 3 shows some
special cases of Kum-Power density functions.

F(x):l—(l—




Math Sci (2017) 11:131-138

133

Pareto (beta=1,k=1)

— a=0.5, b=1

15

1.0

00
1

Fig. 2 Some Kum-Pareto distributions
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Fig. 3 Some Kum-Power distributions
Parameter estimation

The ML method is one of the most widely used parameter
estimation methods in statistics. On the other hand, it is
known that ML estimation may lead to inconsistent esti-
mation results, especially in parameter-dependent bound-
ary situations. Ranneby [13] showed that in such cases, the
maximum spacing method is more reliable than the ML
method. Ekstrom [7, 8], on the other hand, showed that the
MSP estimators may give better results than ML estimators
for small samples. Also, Cheng [4] showed that in
unbounded likelihood problems such as estimation of
three-parameters in the Weibull distribution, the MSP
estimation method produces consistent and asymptotically
efficient estimators. Recently, Tamandi and Nadarajah [16]

investigated parameter estimation of some Kum-G distri-
butions by using ML and MSP methods.

In this paper, we consider parameter estimation of the
Kum-Weibull, Kum-Pareto and Kum-Power distributions
by using ML and MSP methods. We note that in Kum-Par
as well as Kum-Pow distributions parameter-dependent
boundaries exist. Therefore, we hope that this study will
contribute to parameter estimation in Kum-G distributions.

Since by definition of the Kum-G distributions two
additional shape parameters are introduced to the family of
G(x, ) distributions, the estimation of parameters becomes
an interesting problem. The additional two parameters a and
b provide more flexibility in modeling and applications. On
the other hand, it should be noted that this flexibility also
causes some major problems in parameter estimation. It can
be seen that one of the main problems is that one may have to
deal with quite different support sets of the distribution for
different parameter values. Thus classical hill-climbing
approaches such as Newton—Raphson and as well as methods
such as Nelder—Mead may actually not give consistent (or
any) results in Kum-G distributions.

Maximum likelihood method

To obtain the ML and MSP formulations for Kum-G distri-
butions suppose that X;, X, ..., X, is a random sample from
some Kum-G distribution G(x, 0) with pdf given by (3) and
baseline pdf g. Also suppose that g is parameterized by a vector
0 of length p. The log-likelihood function of a, b and @ is

l(a,b,0) = nloga+nlogh + Zlogg(x,-, 0)
=1

+ (a— l)znjlogG(x,-,()) (7
-1 Zlog [1-

The ML estimates of the parameters can be found by
solving the following equations simultaneously:

n < "~ G(x;,0)log G(x;,0)
J— l . —_ —1 p—
a+ ;:l 0gG(x;,0)— (b—1) E 0,

x,, 0)]

=1 l—G“(xi,H)
—+Zlogl— “(x;,0)] =0,
and
" 1 0g(xi,0) z": 1 aG 0G(x;, 0)
i=1 g(xia 0) aok i—1 G xh aok
G (x;,0) 6G(x,-, 0) 0

—a(b -1
al )I,fll—G“(x,,B) 30,

Y
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It should be noted that in order to find numerical solutions
by using the above formulae, one has to calculate among
other functions, g(x, @) for different parameter vectors 0,
which may stop the iterations of the algorithm because
g(x,0) may not be defined for the corresponding 6 vector.
Since in (8) the first term includes the reciprocal of g(x, 0)
some algorithms may not converge or even work in this
case. By considering how the MSP method (see Eq. (11)) is
obtained, one may observe that this type of problem is less
likely to occur in MSP.

Maximum spacing method

The MSP method was introduced by Cheng [4] as an
alternative to the ML method. Ranneby [13] derived the
MSP method from an approximation of the Kullback-Lei-
bler divergence (KLD). Cheng [4] showed that in unboun-
ded likelihood problems such as estimation of three-
parameter gamma, lognormal or Weibull distributions, the
MSP estimation method produces consistent and asymp-
totically efficient estimators. In situations like mixtures of
distributions and distributions with a parameter-dependent
lower bound, where the MLE leads to inconsistent estima-
tors, the MSP estimator is consistent; see [13]. Even in other
situations, Ekstrom [8] showed that the MSP estimators
have better properties than ML estimators for small sam-
ples. Ekstrom [8] showed that MSP estimators are LI1-
consistent for any unimodal pdf without any additional
conditions. According to [13], the MSP method works
better than the ML method for multivariate data too. MSP
estimators have all the nice properties of ML estimators
such as consistency, asymptotic normality, efficiency and
invariance under one-to-one transformations. For a detailed
survey of the MSP method, the reader is referred to [8]. On
the other hand, MSP estimators have some disadvantages
too. First of all, they are sensitive to closely spaced obser-
vations, and especially ties. They are also sensitive to sec-
ondary clustering: one example is when a set of
observations is thought to come from a single normal dis-
tribution, but in fact comes from a mixture of normals with
different means [5].

Let x1,x7,...,x, be a random sample from a population
with cdf F(x,0) and let f(x,0) denote the corresponding
pdf. The Kullback-Leibler divergence between F(x, 6) and
F(x,00) is given by

H(Fy, Fg,) = / £(x, 00) 10g‘§((): ‘20)) dx

The KLD can be approximated by estimating H(Fy, Fy,) by

1 1 (.Xi, 00)
Z;“’gm, 0)

©)
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Minimizing (9) with respect to 0, the estimator of 6, can be
found, which is actually the well-known MLE. It should be
noted that for some continuous distributions, logf(x;), i =
1,...,n may not be bounded from above. Ranneby [13],
therefore, suggested another approximation of the KLD,
namely

F(x(m@o) - F(x(ifl)a 0o)
F()C(i), 0) — F(-x(i—l)a 0) ’

(10)

where x_1) <xi_1) < -+ <x(_) are the order statistics
and F()C(()), 0) = 0, F(X(n+1), 0) =1. F()C(i), 00) -
F(x(_1),0) are the first-order  spacings  of
F(X«)), 00), ceey F(X(nJr]), 0)
By minimizing (10) the MSP estimator of 6, is obtained.
Minimizing (10) is equivalent to maximizing:
n+1

M(0) = " log[F(x(),0) — F(x(1),0)], (11)
i=1

where 0 is an unknown parameter. Therefore, the MSP
estimator can obtained by maximizing M(0) with respect to
0.

Consider estimation of some Kum-G distribution with
baseline distribution G by the MSP method. Suppose that
X(1),X(2)5 « s X(n) is an  ordered sample and
x@©) = 0,%(441) = co. These values for xg) and x(,i)
assume that the support for G is the positive real line. If the
support for G is different, then xg) and x,, ) can be chosen
accordingly. Substituting (2) into (11) we obtain

ntl

M(a,b,0) = log{ (1= G*(x1),0))" (1 - G*(x,0))" }.
i=1
(12)

To find the ML estimates of the parameters, the simulta-
neous solutions of the equations obtained by taking partial
derivatives with respect to the parameters a, b and 6 have
to be found. It should be noted that, in general, no ana-
lytical solution exists for these equations. Therefore,
numerical methods need to be applied in order to find the
corresponding parameter estimates.

Simulation results

Simulation is a powerful tool that is used in many areas of
science. For example, some recent simulation studies can
be found in [1, 18]. Abbasbandy and Shivanian [1] used
numerical simulation based on meshless technique to study
the biological population model. Vajargah and Shoghi [18]
used quasi-Monte Carlo method in prediction of total index
of stock market and value at risk. To assess the perfor-
mance of the ML and MSP estimators we conducted a
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small size simulation study for the Kum-W, Kum-Par and
Kum-Pow distributions. It should be noted that these three
Kum-G distributions have different characteristics and are
also important in reliability problems and applications. The
Kum-Par and Kum-Pow distributions both have parameter-
dependent boundaries, which may have important impli-
cations in parameter estimation. We used 1000 runs in each
simulation to compare estimation results for the estimators.
In this study, we selected a sample size of n = 25.

In order to include the effect of initial values in the
estimates, we used randomly generated starting values as
follows. Let Kum-G(a, b, 6, 6,) be one of the considered
Kum-G distributions, where G is one of the Weibull, Pareto
or Power distributions and 6, and 0, are the corresponding
parameters. We generated random variates from Kum-
G(ag, bo, 0,°, 920) and as starting values the following
values were used:

ap 0
e (-9
ag+ uy, up € )
by by

b Ul ——,—
0+ Uz, Uy € ( 2,2)

0 0

0

0:° +us, uz € U(—77%)
90 00

020-|-I/t47 I/t4EU(—i L)

Table 2 shows that, in general, MSP estimates have smaller
bias and MSEs. When a is considerably larger than b signifi-
cant differences between the two estimates are observed. Also

Table 2 Bias and MSE for sample size n = 25 (1000 runs)

for a = 10 we observed some convergence problems related
to the initial parameters in the ML method. Therefore, only
1000 iterations were conducted in the simulations. We note
that this problem did not occur in the MSP method.

When a < b (that is for heavy-tailed) and for fixed a with
increasing b Table 3 shows that the MSEs for MSP are
smaller then for MLE. On the other hand, when a is con-
siderably larger than b significant differences between the
two estimates are observed. In the remaining cases no
significant differences are observed.

From Table 4 it can be observed that MLE, in general,
outperforms MSP estimates. This can be explained by the
fact that for the Kum-Pow distribution closely spaced
observations are much more likely to occur. It is known
that MSP is sensitive to closely spaced observations.

It should be noted that estimating all four parameters in
the Kum-G families of distributions may result in incon-
sistent estimates. In addition, it can be observed that the
estimates are highly dependent on the initial values which
may also lead to convergence problems. For this reason
when applying these families of distributions to real data,
we preferred to use genetic algorithms for estimating the
parameters.

Application to real data
Wind energy is an important alternative to conventional

energy resources. Therefore, one may find many studies
related to modeling wind characteristics such as wind

Weibull a b 1 MSE(/T) é MSE(¢) a MSE(a) b MSE(b)
MLE 0.5 0.5 0.0622 0.0377 -0.0134 0.0639 —0.0319 0.0855 0.0587 0.0958
MSP —0.0057 0.0865 0.0284 0.0969 0.0334 0.0283 0.0427 0.0298
MLE 0.5 1.0 0.1059 0.0412 0.0578 0.0306 —0.4037 0.2029 0.3809 0.1666
MSP 0.0123 0.0829 0.0123 0.0924 0.0547 0.0327 0.0544 0.1003
MLE 0.5 2.5 0.1357 0.0542 0.0764 0.0330 —0.3916 0.1640 0.6279 0.4740
MSP 0.0658 0.0992 0.0161 0.0791 0.1449 0.0722 0.0484 0.5480
MLE 2 0.5 0.0016 0.0203 0.0113 0.0238 0.1850 0.135 0.0708 0.0089
MSP 0.0273 0.0843 0.0850 0.1250 0.0536 0.389 0.0200 0.0232
MLE 2 1.0 —0.0891 0.1176 0.1390 0.1206 0.1730 0.240 0.1142 0.1038
MSP 0.0400 0.0824 0.1140 0.1460 0.0968 0.365 —0.0017 0.0838
MLE 2 2.5 0.2786 0.3257 0.3100 0.2091 —0.2550 0.702 0.4131 0.3369
MSP 0.1288 0.1416 0.1160 0.1370 0.0431 0.349 0.0315 0.5240
MLE 10 0.5 0.3982 0.3028 —0.926 1.230 0.6820 2.65 0.5470 0.3457
MSP 0.2270 0.3490 0.598 0.599 0.0335 8.01 0.0084 0.0210
MLE 10 1.0 0.0042 0.0425 0.579 0.677 0.4750 2.30 0.1280 0.0246
MSP 0.1640 0.2290 0.668 0.775 0.2492 8.41 0.0121 0.0857
MLE 10 2.5 0.0485 0.0800 0.672 0.725 0.3150 2.61 0.3200 0.1363
MSP 0.2970 0.3330 0.565 0.634 0.2283 8.68 —0.0023 0.4780
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Table 3 Bias and MSE for N

sample size n = 25 (1000 runs) L€ 4 b p MSE() & MSE(k) 4 MSE(@) b MSE(b)
MLE 05 05 -039 0.199 0.0081 00856 00284 00312 00546 0.0411
MSP —0412 0204 00220 00883 00284 00264 00993 0.0394
MLE 05 10 —0425 0218 00120 00914 00231 00273  0.1191 0.1239
MSP —0418 0.204 00297 00814 00261 00250  0.0803 0.1005
MLE 05 25 —0597 0418 0.1606 0.1176 —0.0356 0.0404 02870 0.6307
MSP ~0.560 0350 02024 01297 00633 00371 00982 0.5622
MLE 2 05 -0314 0155  —00032 00891  0.1058 0351 00322 0.0356
MSP ~0323 0.169 00071 00772 —0.0416 0335 0.1124  0.0476
MLE 2 10 -029 0.151 00146 00807 00303 0338 0.0583 0.1124
MSP —0316 0.167 00900 0.1103 00059 0334 0.0396  0.0760
MLE 2 25 —0369 0213 0.1837 0.1597  0.0447 0350 0.0393  0.5444
MSP —0383 0219 0.1971 0.1631 00200 0342 0.0402 0.5619
MLE 10 05 0429 0423  —00019 00892 —0.1095 8240 0.0871 0.1170
MSP ~0.195 0270 03750 04190 00129 8.260 04494  0.4548
MLE 10 10 0437 0463 00227 0.1005  0.0875 8.080 0.1025 0.1850
MSP —0214 0278 07960 1.0200 —0.1422 8.610 0.0462  0.0912
MLE 10 25 0207 0419 03083 04534 —0.1044 8440  —0.0056 0.5170
MSP —0.191 0303 08350 1.0790  0.1349 8.220 00134 0.5236
faz:rll);?e4si§e: ang inSSN([IS (])E()(gorruns) Power —a b & MSE(4) B MSE(B ) a MSE(ﬁ) b MSE([;)
MLE 05 05 00063 0.1050 0558 0.390 02170 0.163 0.1290  0.1460
MSP 07600 1.0700 0530 0366 03690 0.195 0.0600  0.0575
MLE 05 10 00600 0208  0.605 0476 0.1197 0322 0.1380  0.3990
MSP 07610 1.100 0485 0317 03870  0.201 0.0421 0.1215
MLE 05 25 00691 0299 0548 0472 0.0585 0.488 02000 0.9570
MSP 07140 1.010 0485 0318 03880  0.204 00423 0.5609
MLE 2 05 0122 0101 0653 0495 02350 0426  —0.1374 0.0731
MSP 0814 1180  0.884 0876 0.0353 0319 0.0020  0.0236
MLE 2 10 0194 0156 0634 0503 0.1590 0566  —0.1248 0.3205
MSP 0878 1240 0655 0515 0.0871 0317 00229 0.1142
MLE 2 25 0212 0268 0530 0432 0.1180  0.594 0.0573  1.0092
MSP 0976 1430 0497 0336 0.1634 0.293 0.0949  0.5837
MLE 10 05 0399 0418 0753 0681  —0.0829 8470  —0.0141 0.0232
MSP 0876 1260  1.400 2.140 0.0422 8670  —0.0067 0.0202
MLE 10 1.0 0482 0447 0691 0.574 00283 7980  —0.0921 0.1209
MSP 0885 1250 1320 1930  —0.1088 8.180 0.0081 0.0848
MLE 10 25 0620 059 0656 0.550 00286 8270  —0.1156 0.6505
MSP 1.040 1510 1180 1.610  —0.1045 8030  —0.0001 0.5635

speed in order to estimate the potential for use in gener-
ating energy. It can be observed that distributions such as
Weibull, Rayleigh, gamma, lognormal, beta, Burr, and
inverse Gaussian distributions are used in modeling wind
speed frequencies [17]. As noted before, the two additional
parameters in the Kum-G distribution families may provide
more flexibility in modeling. For example, the Kum-Wei-
bull family of distributions include the Weibull and Ray-
leigh distributions as special cases. Motivated by this fact

’r @ Springer

the Kum-Weibull, Kum-Pareto and Kum-Power families of
distributions are applied to model wind speed frequencies
for a particular location, Cide, in Turkey. The data repre-
sent daily average wind speed measurements at the given
location for January 2016 and are obtained from the
Turkish State Meteorological Service.

The results for the wind data are given in Table 5 and in
Fig. 4. The parameter estimates for the Weibull distribu-
tion are obtained by applying the fitdistr method in R. The
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Table 5 Parameter estimates

4 A n* N* 2 foti
fitted to wind data Model a b 0 0, ¥ statistic p value
Weibull (MLE) 1 1 4.366 2.774 0.09872 0.8943
Kum-W (MSP) 4.814 9.211 0.482 4,993 0.078944 0.982
Kum-Pow (MSP) 1.599 7.974 1.311 2.721 0.073136 0.9921

* For Weibull and Kum-W 60, = /, 0, = ¢, for Kum-Pow 0, =, 6, = f

Fit to Wind Data

— Weibull
--- Kum-Weibull
| ] e Kum-Power

Density
000 005 010 015 020 025 030 035

T T T T 1
0 2 4 6 8

Fig. 4 Parameter estimates for wind data

parameter estimates for the Kum-W and Kum-Pow distri-
butions were obtained by applying the ga method ([15]),
which is a genetic algorithm method implemented in R.
Since in this particular application the Kum-Pareto families
of distributions are not suited for the data we did not
include the results for Kum-Pareto. On the other hand, due
to convergence problems with ML estimation, only results
for the MSP method with genetic algorithms are given.
Table 5 clearly demonstrates that Kum-G families of dis-
tributions can be used as alternatives for classical distri-
butions such as Weibull. Since many types of distributions,
for example, are used in modeling wind characteristics it
should be expected that Kum-G families of distributions
may improve modeling results.

Conclusion

Tamandi and Nadarajah [16] considered parameter estima-
tion of Kum-Weibull, Kum-Normal and Kum-InverseNor-
mal distributions. They stated that for these distributions, in
general, the MSP method results in smaller bias and MSEs
for small sample sizes. It should be noted that in these dis-
tributions no parameter-dependent boundaries exist, that is

the domain of the random variable is independent of the
parameters. In this study, we considered three Kum-G dis-
tributions, all with different characteristics. The Kum-Par
and Kum-Pow distributions both have parameter-dependent
bounds and may model different distributions. In addition,
we applied these families of distributions to model real data
for wind speed measurements.

The computations in the simulations and in application
to real data have shown that the MSP method, in general,
outperforms the ML method. Also, we have seen that in the
ML method the initial values for parameters may cause the
algorithms to stop before reaching any feasible parameter
estimate. Thus, in general the ML approach is sensitive to
initial values leading to convergence problems. In contrast,
the MSP method, in general, seems to give more consistent
results. Therefore, to model wind speed we have preferred
to use genetic algorithms with the MSP approach in order
to obtain parameter estimates for the Kum-W and Kum-
Pow families of distributions.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://crea
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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