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Abstract Since Kum-G distributions have additional two

parameters, the estimation of parameters becomes an

interesting problem by itself. In this study, we consider

parameter estimation of Kum-Weibull, Kum-Pareto and

Kum-Power distributions by using the maximum likelihood

and the maximum spacing methods. These three distribu-

tions are important in reliability and other applications. The

Kum-Pareto and Kum-Power distributions have parameter-

dependent boundaries, which makes the estimation of

parameters more interesting. We performed simulations for

each of these considered distributions by using the R

software for estimating parameters using the maximum

likelihood and the maximum spacing method. In addition,

an application of these distribution families to real data for

modeling wind speed in a particular location in Turkey is

discussed.

Keywords Kumaraswamy distribution � Maximum

likelihood � Maximum spacing � Parameter estimation �
Simulation

Introduction

In 1980, Kumaraswamy [11] introduced a new distribution

with applications in hydrology. The cumulative distribution

function (cdf) of this new distribution is given by

FðxÞ ¼ 1� 1� xað Þb; 0\x\1; ð1Þ

where a[ 0 and b[ 0. Jones [10] discussed properties of

the Kumaraswamy distribution and its similarities with the

beta distribution.

In recent years one can find many papers which gener-

alize this distribution by replacing x with some known

distribution such as normal, Weibull, Pareto, and others

(see, for example [2, 9, 12]). Based on the Kumaraswamy

distribution Cordeiro and Castro [6] introduced a new

generalized family of distributions, denoted in this paper by

Kum-G, and discussed its basic statistical properties and

application to a real data set.

It can be seen that in recent years many authors study

applications and parameter estimation of special Kum-G

distributions. For example, Cordeiro et al. [9] investigate

the Kum-Weibull model and its application to failure data.

Tamandi and Nadarajah [16] discuss parameter estimation

of the Kum-Weibull, Kum-Normal and Kum-Inverse

Gaussian families.

Since Kum-G distributions have additional two param-

eters, the estimation of parameters becomes an interesting

problem by itself. The maximum likelihood method (ML)

is one of the preferred methods for estimating the param-

eters in Kum-G distributions. Tamandi and Nadarajah [16]

consider also the maximum spacing method (MSP) and

compare it with the maximum likelihood (ML) method for

estimating the parameters in some of the Kum-G

distributions.

It is known that in situations like mixtures of distribu-

tions and distributions with a parameter-dependent lower

bound, where the ML estimator leads to inconsistent esti-

mators, the MSP estimator is consistent; see [13]. Moti-

vated by this fact it is natural to consider the MSP estimator
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in parameter estimation for the Kum-Pareto and Kum-

Power distributions.

In this study, we consider parameter estimation of the

Kum-Weibull [6], Kum-Pareto [2] and Kum-Power [12]

families of distributions by using the ML and MSP meth-

ods. Although one may find some studies for the Kum-

Weibull and Kum-Pareto distributions, there is only one

paper dealing with the Kum-Power family of distributions.

We performed simulations for each of the considered

family of distributions. For calculations we used the R

software [14]. In particular, for estimating parameters in

the simulations the optim function in R was applied with

the Nelder–Mead method. The parameter estimates for the

Weibull distribution were obtained by applying the fitdistr

method in R.

It can be seen from the literature that wind speed can be

modeled by various distributions such as Weibull, Ray-

leigh, gamma, lognormal, beta, Burr, and inverse Gaussian

distributions, among others [17]. For example, Chang [3]

compared the performance of six numerical methods in

estimating Weibull parameters for wind energy application.

He concludes that the maximum likelihood, modified

maximum likelihood and moment methods show better

performance in simulation tests. In this study, we consider

modeling wind speed by using the following generalized

families of distributions: Kum-Weibull and Kum-Power.

We note here that, for example, the Kum-Weibull family of

distributions includes the Weibull and Rayleigh distribu-

tions. It is expected that the flexibility of the two additional

two parameters in the Kum-G family of distributions will

improve the modeling results. The parameter estimates for

the real data were obtained by applying the ga method [15],

which is a genetic algorithm method implemented in R.

Kumaraswamy distributions considered

Cordeiro and Castro [6] introduced a new generalized

family of distributions by replacing x with a continuous

base line distribution G(x) in Kumaraswamy’s distribution:

FðxÞ ¼ 1� 1� GaðxÞf gb; ð2Þ

f ðxÞ ¼ ab gðxÞGa�1ðxÞ 1� GaðxÞð Þb�1; ð3Þ

where g is the probability density function (pdf) of G and

a[ 0, b[ 0.

The cdf of the Kum-Weibull distribution is given by

FðxÞ ¼ 1� 1� 1� e�ðkxÞc
h ia� �b

; ð4Þ

where a[ 0, b[ 0, k[ 0 and c[ 0. We will denote this

distribution by Kum-Wða; b; k; cÞ. Some special cases of

the Kum-Wða; b; k; cÞ are given in Table 1 [6]. Figure 1

shows some special cases of the density function for this

family.

The cdf of the Kum-Pareto distribution is

FðxÞ ¼ 1� 1� 1� b
x

� �k
" #a !b

; ð5Þ

where a[ 0, b[ 0, b[ 0 and k[ 0. We will denote this

distribution by Kum-Parða; b; b; kÞ. Figure 2 shows some

special cases of Kum-Pareto density functions.

The cdf of the Kum-Power distribution is given by

FðxÞ ¼ 1� 1� x

b

� �a� �a� �b

ð6Þ

where a[ 0, b[ 0, a[ 0 and b[ 0. We will denote this

distribution by Kum-Powða; b; a; bÞ. Figure 3 shows some

special cases of Kum-Power density functions.

Table 1 Some Kum-W special cases

Distribution k c a b

Kum-exponential 1

Kum-Rayleigh 2

Exponentiated-Weibull 1

Exponentiated-Rayleigh 2 1

Exponentiated-

exponential

1 1

Weibull 1 1

Rayleigh 2 1 1

Exponential 1 1 1

Fig. 1 Some Kum-Weibull distributions
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Parameter estimation

The ML method is one of the most widely used parameter

estimation methods in statistics. On the other hand, it is

known that ML estimation may lead to inconsistent esti-

mation results, especially in parameter-dependent bound-

ary situations. Ranneby [13] showed that in such cases, the

maximum spacing method is more reliable than the ML

method. Ekström [7, 8], on the other hand, showed that the

MSP estimators may give better results than ML estimators

for small samples. Also, Cheng [4] showed that in

unbounded likelihood problems such as estimation of

three-parameters in the Weibull distribution, the MSP

estimation method produces consistent and asymptotically

efficient estimators. Recently, Tamandi and Nadarajah [16]

investigated parameter estimation of some Kum-G distri-

butions by using ML and MSP methods.

In this paper, we consider parameter estimation of the

Kum-Weibull, Kum-Pareto and Kum-Power distributions

by using ML and MSP methods. We note that in Kum-Par

as well as Kum-Pow distributions parameter-dependent

boundaries exist. Therefore, we hope that this study will

contribute to parameter estimation in Kum-G distributions.

Since by definition of the Kum-G distributions two

additional shape parameters are introduced to the family of

Gðx; hÞ distributions, the estimation of parameters becomes

an interesting problem. The additional two parameters a and

b provide more flexibility in modeling and applications. On

the other hand, it should be noted that this flexibility also

causes some major problems in parameter estimation. It can

be seen that one of the main problems is that onemay have to

deal with quite different support sets of the distribution for

different parameter values. Thus classical hill-climbing

approaches such asNewton–Raphson and aswell asmethods

such as Nelder–Mead may actually not give consistent (or

any) results in Kum-G distributions.

Maximum likelihood method

To obtain the ML and MSP formulations for Kum-G distri-

butions suppose that X1;X2; . . .;Xn is a random sample from

some Kum-G distribution Gðx; hÞ with pdf given by (3) and

baseline pdf g. Also suppose thatg is parameterized byavector

h of length p. The log-likelihood function of a, b and h is

lða; b; hÞ ¼ n log aþ n log bþ
Xn
i¼1

log gðxi; hÞ

þ ða� 1Þ
Xn
i¼1

logGðxi; hÞ

þ ðb� 1Þ
Xn
i¼1

log 1� Gaðxi; hÞ½ �

ð7Þ

The ML estimates of the parameters can be found by

solving the following equations simultaneously:

n

a
þ
Xn
i¼1

logGðxi;hÞ� ðb� 1Þ
Xn
i¼1

Gaðxi;hÞ logGðxi;hÞ
1�Gaðxi;hÞ

¼ 0;

n

b
þ
Xn
i¼1

log 1� Gaðxi; hÞ½ � ¼ 0;

and

Xn
i¼1

1

gðxi; hÞ
ogðxi; hÞ

ohk
� ða� 1Þ

Xn
i¼1

1

Gðxi; hÞ
oGðxi; hÞ

ohk

�aðb� 1Þ
Xn
i¼1

Ga�1ðxi; hÞ
1� Gaðxi; hÞ

oGðxi; hÞ
ohk

¼ 0:

ð8Þ

Fig. 2 Some Kum-Pareto distributions

Fig. 3 Some Kum-Power distributions
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It should be noted that in order to find numerical solutions

by using the above formulae, one has to calculate among

other functions, gðx; hÞ for different parameter vectors h,

which may stop the iterations of the algorithm because

gðx; hÞ may not be defined for the corresponding h vector.

Since in (8) the first term includes the reciprocal of gðx; hÞ
some algorithms may not converge or even work in this

case. By considering how the MSP method (see Eq. (11)) is

obtained, one may observe that this type of problem is less

likely to occur in MSP.

Maximum spacing method

The MSP method was introduced by Cheng [4] as an

alternative to the ML method. Ranneby [13] derived the

MSP method from an approximation of the Kullback–Lei-

bler divergence (KLD). Cheng [4] showed that in unboun-

ded likelihood problems such as estimation of three-

parameter gamma, lognormal or Weibull distributions, the

MSP estimation method produces consistent and asymp-

totically efficient estimators. In situations like mixtures of

distributions and distributions with a parameter-dependent

lower bound, where the MLE leads to inconsistent estima-

tors, the MSP estimator is consistent; see [13]. Even in other

situations, Ekström [8] showed that the MSP estimators

have better properties than ML estimators for small sam-

ples. Ekström [8] showed that MSP estimators are L1-

consistent for any unimodal pdf without any additional

conditions. According to [13], the MSP method works

better than the ML method for multivariate data too. MSP

estimators have all the nice properties of ML estimators

such as consistency, asymptotic normality, efficiency and

invariance under one-to-one transformations. For a detailed

survey of the MSP method, the reader is referred to [8]. On

the other hand, MSP estimators have some disadvantages

too. First of all, they are sensitive to closely spaced obser-

vations, and especially ties. They are also sensitive to sec-

ondary clustering: one example is when a set of

observations is thought to come from a single normal dis-

tribution, but in fact comes from a mixture of normals with

different means [5].

Let x1; x2; . . .; xn be a random sample from a population

with cdf Fðx; hÞ and let f ðx; hÞ denote the corresponding

pdf. The Kullback–Leibler divergence between Fðx; hÞ and
Fðx; h0Þ is given by

HðFh;Fh0Þ ¼
Z

f ðx; h0Þ log
f ðx; h0Þ
f ðx; hÞ

����
����dx

The KLD can be approximated by estimating HðFh;Fh0Þ by

1

n

Xn
i¼1

log
f ðxi; h0Þ
f ðxi; hÞ

����
���� ð9Þ

Minimizing (9) with respect to h, the estimator of h0 can be

found, which is actually the well-known MLE. It should be

noted that for some continuous distributions, log f ðxiÞ, i ¼
1; . . .; n may not be bounded from above. Ranneby [13],

therefore, suggested another approximation of the KLD,

namely

1

nþ 1

Xnþ1

i¼1

log
FðxðiÞ; h0Þ � Fðxði�1Þ; h0Þ
FðxðiÞ; hÞ � Fðxði�1Þ; hÞ

����
����; ð10Þ

where xði�1Þ � xði�1Þ � � � � � xði�1Þ are the order statistics

and Fðxð0Þ; hÞ � 0, Fðxðnþ1Þ; hÞ � 1. FðxðiÞ; h0Þ �
Fðxði�1Þ; hÞ are the first-order spacings of

Fðxð0Þ; h0Þ; . . .;Fðxðnþ1Þ; hÞ.
By minimizing (10) the MSP estimator of h0 is obtained.

Minimizing (10) is equivalent to maximizing:

MðhÞ ¼
Xnþ1

i¼1

log FðxðiÞ; hÞ � Fðxði�1Þ; hÞ
	 


; ð11Þ

where h is an unknown parameter. Therefore, the MSP

estimator can obtained by maximizingMðhÞ with respect to
h.

Consider estimation of some Kum-G distribution with

baseline distribution G by the MSP method. Suppose that

xð1Þ; xð2Þ; . . .; xðnÞ is an ordered sample and

xð0Þ ¼ 0; xðnþ1Þ ¼ 1. These values for xð0Þ and xðnþ1Þ
assume that the support for G is the positive real line. If the

support for G is different, then xð0Þ and xðnþ1Þ can be chosen

accordingly. Substituting (2) into (11) we obtain

Mða;b;hÞ ¼
Xnþ1

i¼1

log 1�Gaðxði�1Þ;hÞ
� �b�ð1�GaðxðiÞ;hÞÞb
n o

:

ð12Þ

To find the ML estimates of the parameters, the simulta-

neous solutions of the equations obtained by taking partial

derivatives with respect to the parameters a, b and h have

to be found. It should be noted that, in general, no ana-

lytical solution exists for these equations. Therefore,

numerical methods need to be applied in order to find the

corresponding parameter estimates.

Simulation results

Simulation is a powerful tool that is used in many areas of

science. For example, some recent simulation studies can

be found in [1, 18]. Abbasbandy and Shivanian [1] used

numerical simulation based on meshless technique to study

the biological population model. Vajargah and Shoghi [18]

used quasi-Monte Carlo method in prediction of total index

of stock market and value at risk. To assess the perfor-

mance of the ML and MSP estimators we conducted a

134 Math Sci (2017) 11:131–138
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small size simulation study for the Kum-W, Kum-Par and

Kum-Pow distributions. It should be noted that these three

Kum-G distributions have different characteristics and are

also important in reliability problems and applications. The

Kum-Par and Kum-Pow distributions both have parameter-

dependent boundaries, which may have important impli-

cations in parameter estimation. We used 1000 runs in each

simulation to compare estimation results for the estimators.

In this study, we selected a sample size of n ¼ 25.

In order to include the effect of initial values in the

estimates, we used randomly generated starting values as

follows. Let Kum-Gða; b; h1; h2Þ be one of the considered

Kum-G distributions, where G is one of the Weibull, Pareto

or Power distributions and h1 and h2 are the corresponding
parameters. We generated random variates from Kum-

Gða0; b0; h10; h20Þ and as starting values the following

values were used:

a0 þ u1; u1 2 U � a0

2
;
a0

2

� �

b0 þ u2; u2 2 U � b0

2
;
b0

2

� �

h1
0 þ u3; u3 2 U � h1

0

2
;
h1

0

2

� �

h2
0 þ u4; u4 2 U � h2

0

2
;
h2

0

2

� �

Table 2 shows that, in general,MSP estimates have smaller

bias and MSEs. When a is considerably larger than b signifi-

cant differences between the two estimates are observed. Also

for a ¼ 10 we observed some convergence problems related

to the initial parameters in the ML method. Therefore, only

1000 iterations were conducted in the simulations. We note

that this problem did not occur in the MSP method.

When a\b (that is for heavy-tailed) and for fixed a with

increasing b Table 3 shows that the MSEs for MSP are

smaller then for MLE. On the other hand, when a is con-

siderably larger than b significant differences between the

two estimates are observed. In the remaining cases no

significant differences are observed.

From Table 4 it can be observed that MLE, in general,

outperforms MSP estimates. This can be explained by the

fact that for the Kum-Pow distribution closely spaced

observations are much more likely to occur. It is known

that MSP is sensitive to closely spaced observations.

It should be noted that estimating all four parameters in

the Kum-G families of distributions may result in incon-

sistent estimates. In addition, it can be observed that the

estimates are highly dependent on the initial values which

may also lead to convergence problems. For this reason

when applying these families of distributions to real data,

we preferred to use genetic algorithms for estimating the

parameters.

Application to real data

Wind energy is an important alternative to conventional

energy resources. Therefore, one may find many studies

related to modeling wind characteristics such as wind

Table 2 Bias and MSE for sample size n ¼ 25 (1000 runs)

Weibull a b k̂ MSEðk̂Þ ĉ MSEðĉÞ â MSEðâÞ b̂ MSEðb̂Þ

MLE 0.5 0.5 0.0622 0.0377 -0.0134 0.0639 -0.0319 0.0855 0.0587 0.0958

MSP -0.0057 0.0865 0.0284 0.0969 0.0334 0.0283 0.0427 0.0298

MLE 0.5 1.0 0.1059 0.0412 0.0578 0.0306 -0.4037 0.2029 0.3809 0.1666

MSP 0.0123 0.0829 0.0123 0.0924 0.0547 0.0327 0.0544 0.1003

MLE 0.5 2.5 0.1357 0.0542 0.0764 0.0330 -0.3916 0.1640 0.6279 0.4740

MSP 0.0658 0.0992 0.0161 0.0791 0.1449 0.0722 0.0484 0.5480

MLE 2 0.5 0.0016 0.0203 0.0113 0.0238 0.1850 0.135 0.0708 0.0089

MSP 0.0273 0.0843 0.0850 0.1250 0.0536 0.389 0.0200 0.0232

MLE 2 1.0 -0.0891 0.1176 0.1390 0.1206 0.1730 0.240 0.1142 0.1038

MSP 0.0400 0.0824 0.1140 0.1460 0.0968 0.365 -0.0017 0.0838

MLE 2 2.5 0.2786 0.3257 0.3100 0.2091 -0.2550 0.702 0.4131 0.3369

MSP 0.1288 0.1416 0.1160 0.1370 0.0431 0.349 0.0315 0.5240

MLE 10 0.5 0.3982 0.3028 -0.926 1.230 0.6820 2.65 0.5470 0.3457

MSP 0.2270 0.3490 0.598 0.599 0.0335 8.01 0.0084 0.0210

MLE 10 1.0 0.0042 0.0425 0.579 0.677 0.4750 2.30 0.1280 0.0246

MSP 0.1640 0.2290 0.668 0.775 0.2492 8.41 0.0121 0.0857

MLE 10 2.5 0.0485 0.0800 0.672 0.725 0.3150 2.61 0.3200 0.1363

MSP 0.2970 0.3330 0.565 0.634 0.2283 8.68 -0.0023 0.4780
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speed in order to estimate the potential for use in gener-

ating energy. It can be observed that distributions such as

Weibull, Rayleigh, gamma, lognormal, beta, Burr, and

inverse Gaussian distributions are used in modeling wind

speed frequencies [17]. As noted before, the two additional

parameters in the Kum-G distribution families may provide

more flexibility in modeling. For example, the Kum-Wei-

bull family of distributions include the Weibull and Ray-

leigh distributions as special cases. Motivated by this fact

the Kum-Weibull, Kum-Pareto and Kum-Power families of

distributions are applied to model wind speed frequencies

for a particular location, Cide, in Turkey. The data repre-

sent daily average wind speed measurements at the given

location for January 2016 and are obtained from the

Turkish State Meteorological Service.

The results for the wind data are given in Table 5 and in

Fig. 4. The parameter estimates for the Weibull distribu-

tion are obtained by applying the fitdistr method in R. The

Table 3 Bias and MSE for

sample size n ¼ 25 (1000 runs)
Pareto a b b̂ MSEðb̂Þ k̂ MSEðk̂Þ â MSEðâÞ b̂ MSEðb̂Þ

MLE 0.5 0.5 -0.396 0.199 0.0081 0.0856 0.0284 0.0312 0.0546 0.0411

MSP -0.412 0.204 0.0220 0.0883 0.0284 0.0264 0.0993 0.0394

MLE 0.5 1.0 -0.425 0.218 0.0120 0.0914 0.0231 0.0273 0.1191 0.1239

MSP -0.418 0.204 0.0297 0.0814 0.0261 0.0250 0.0803 0.1005

MLE 0.5 2.5 -0.597 0.418 0.1606 0.1176 -0.0356 0.0404 0.2870 0.6307

MSP -0.560 0.350 0.2024 0.1297 0.0633 0.0371 0.0982 0.5622

MLE 2 0.5 -0.314 0.155 -0.0032 0.0891 0.1058 0.351 0.0322 0.0356

MSP -0.323 0.169 0.0071 0.0772 -0.0416 0.335 0.1124 0.0476

MLE 2 1.0 -0.296 0.151 0.0146 0.0807 0.0303 0.338 0.0583 0.1124

MSP -0.316 0.167 0.0900 0.1103 0.0059 0.334 0.0396 0.0760

MLE 2 2.5 -0.369 0.213 0.1837 0.1597 0.0447 0.350 0.0393 0.5444

MSP -0.383 0.219 0.1971 0.1631 0.0200 0.342 0.0402 0.5619

MLE 10 0.5 0.429 0.423 -0.0019 0.0892 -0.1095 8.240 0.0871 0.1170

MSP -0.195 0.270 0.3750 0.4190 0.0129 8.260 0.4494 0.4548

MLE 10 1.0 0.437 0.463 0.0227 0.1005 0.0875 8.080 0.1025 0.1850

MSP -0.214 0.278 0.7960 1.0200 -0.1422 8.610 0.0462 0.0912

MLE 10 2.5 0.207 0.419 0.3083 0.4534 -0.1044 8.440 -0.0056 0.5170

MSP -0.191 0.303 0.8350 1.0790 0.1349 8.220 0.0134 0.5236

Table 4 Bias and MSE for

sample size n ¼ 25 (1000 runs)
Power a b â MSEðâÞ b̂ MSEðb̂Þ â MSEðâÞ b̂ MSEðb̂Þ

MLE 0.5 0.5 0.0063 0.1050 0.558 0.390 0.2170 0.163 0.1290 0.1460

MSP 0.7600 1.0700 0.530 0.366 0.3690 0.195 0.0600 0.0575

MLE 0.5 1.0 0.0600 0.208 0.605 0.476 0.1197 0.322 0.1380 0.3990

MSP 0.7610 1.100 0.485 0.317 0.3870 0.201 0.0421 0.1215

MLE 0.5 2.5 0.0691 0.299 0.548 0.472 0.0585 0.488 0.2000 0.9570

MSP 0.7140 1.010 0.485 0.318 0.3880 0.204 0.0423 0.5609

MLE 2 0.5 0.122 0.101 0.653 0.495 0.2350 0.426 -0.1374 0.0731

MSP 0.814 1.180 0.884 0.876 0.0353 0.319 0.0020 0.0236

MLE 2 1.0 0.194 0.156 0.634 0.503 0.1590 0.566 -0.1248 0.3205

MSP 0.878 1.240 0.655 0.515 0.0871 0.317 0.0229 0.1142

MLE 2 2.5 0.212 0.268 0.530 0.432 0.1180 0.594 0.0573 1.0092

MSP 0.976 1.430 0.497 0.336 0.1634 0.293 0.0949 0.5837

MLE 10 0.5 0.399 0.418 0.753 0.681 -0.0829 8.470 -0.0141 0.0232

MSP 0.876 1.260 1.400 2.140 0.0422 8.670 -0.0067 0.0202

MLE 10 1.0 0.482 0.447 0.691 0.574 0.0283 7.980 -0.0921 0.1209

MSP 0.885 1.250 1.320 1.930 -0.1088 8.180 0.0081 0.0848

MLE 10 2.5 0.620 0.596 0.656 0.550 0.0286 8.270 -0.1156 0.6505

MSP 1.040 1.510 1.180 1.610 -0.1045 8.030 -0.0001 0.5635
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parameter estimates for the Kum-W and Kum-Pow distri-

butions were obtained by applying the ga method ([15]),

which is a genetic algorithm method implemented in R.

Since in this particular application the Kum-Pareto families

of distributions are not suited for the data we did not

include the results for Kum-Pareto. On the other hand, due

to convergence problems with ML estimation, only results

for the MSP method with genetic algorithms are given.

Table 5 clearly demonstrates that Kum-G families of dis-

tributions can be used as alternatives for classical distri-

butions such as Weibull. Since many types of distributions,

for example, are used in modeling wind characteristics it

should be expected that Kum-G families of distributions

may improve modeling results.

Conclusion

Tamandi and Nadarajah [16] considered parameter estima-

tion of Kum-Weibull, Kum-Normal and Kum-InverseNor-

mal distributions. They stated that for these distributions, in

general, the MSP method results in smaller bias and MSEs

for small sample sizes. It should be noted that in these dis-

tributions no parameter-dependent boundaries exist, that is

the domain of the random variable is independent of the

parameters. In this study, we considered three Kum-G dis-

tributions, all with different characteristics. The Kum-Par

and Kum-Pow distributions both have parameter-dependent

bounds and may model different distributions. In addition,

we applied these families of distributions to model real data

for wind speed measurements.

The computations in the simulations and in application

to real data have shown that the MSP method, in general,

outperforms the ML method. Also, we have seen that in the

ML method the initial values for parameters may cause the

algorithms to stop before reaching any feasible parameter

estimate. Thus, in general the ML approach is sensitive to

initial values leading to convergence problems. In contrast,

the MSP method, in general, seems to give more consistent

results. Therefore, to model wind speed we have preferred

to use genetic algorithms with the MSP approach in order

to obtain parameter estimates for the Kum-W and Kum-

Pow families of distributions.
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