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Abstract
The widespread use of Android-based smartphones made it an important target for malicious applications’ developers. 
So, a large number of frameworks have been proposed to tackle the huge number of daily published malwares. Despite 
there are many review papers that have been conducted in order to shed light on the works that achieved in Android 
malware analysing domain, the number of conducted review papers do not fit with the importance of this research field 
and with the volume of achieved works. Also, there is no comprehensive taxonomy for all research trends in the field of 
analysing malicious applications targeting the Android system. Furthermore, none of the existing review papers con-
tains a schematic model that makes it easy for the reader to know the methods and methodologies used in a particular 
field of research without much effort. This paper aims at proposing a comprehensive taxonomy and suggesting a new 
schematic review approach. To this end, a review of a large number of works that achieved between 2009 and 2019 has 
been conducted. The achieved study includes more than 200 papers that have different goals such as apps’ behaviour 
analysis, automatic user interface triggers or packer/unpacker frameworks development. Also, a comprehensive tax-
onomy has been proposed so that most of the previous works can be classified under it. To the best of our knowledge, 
the suggested taxonomy is the widest and the most comprehensive in terms of the covered research trends. Moreover, 
we have proposed a detailed schematic model (called Schematic Review Model) illustrates the process of detecting the 
malignant applications of an Android in the light of the studied works and the proposed taxonomy. To our knowledge, 
this is the first time that the Android malware detection methods have been explained in this way with this amount of 
detail. Furthermore, the studied researches have been analysed according to multiple criteria such as used analysing 
method, used features, used detection method, and used dataset. Also, the features used in the studied works were 
discussed in detail by dividing it into multiple classes. Moreover, the challenges facing Android’s malware analysing 
methods were discussed in detail. Finally, it has been concluded that there are gaps between the size and the goal of 
the conducted works and the number of malicious apps published every day, so some future works areas have been 
proposed and discussed.

Keywords  Android malware · Static analysis · Dynamic analysis · Malware visualisation · Obfuscation · Malware 
detection

1  Introduction

Smartphones have become one of the most important 
devices that currently relied on to accomplish many impor-
tant activities in our daily lives. Therefore, to keep abreast 

of the growth and rapid development of smartphone tech-
nology, many advanced applications have been developed 
and presented in both of the official and third-party app 
markets. Consequently, smartphones demand has been 
increased dramatically over time. According to Gartner’s 
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2017 report about the worldwide smartphones’ sales, a 
global sale of smartphones reached 366.2 million units in 
the second quarter of 2017 with 6.7% increase over the 
same period in 2016 [1]. Furthermore, it was stated that 
Google’s Android extended its lead by capturing 86% of 
the total market in 2017 with 1.1% increase over 2016 [2].

The Android OS is counted as the most popular Mobile 
OS because that it is a free and open source OS. In addi-
tion, Android has facilitated downloading its applications 
from each of the official and third-party app markets. 
The Android official market (Google Play) was originally 
launched in October 2008 under the name Android Mar-
ket, and according to the statistics portal of Statista web-
site, the number of available apps in the Google Play app 
store reached to 3.3 million apps in March 2018, after sur-
passing 1 million apps in July 2013 [3]. Also, it is stated 
that the fourth quarter of 2017 representing an 8.84% 
growth in number of apps compared to the third quar-
ter [4]. Moreover, they (Statista researchers) said that the 
number of apps that downloaded from the Google Play 
app store between August 2010 and May 2016 reached 
65 billion apps [5].

On the other hand, the widespread of Android and 
its open-source nature have made it a major target for 
malicious software developers. According to the Pulse 
Secure Mobile Threat Report in 2015, nearly one million 
unique malicious applications that target Android OS were 
launched in 2014 with a 391% increase over 2013 [6]. And 
they stated that Android is ranked as the first smartphone 
OS in terms of the number of malicious programs, where 
the number of malwares that targeting Android reached 
97% of all mobile devices’ malware. Also, according to 
Symantec’s 2016 internet security threat report [7], the 
number of Android malware families added in 2015 grew 
by 6% compared with the 20% growth in 2014. Moreo-
ver, it was indicated that the Android malware start to use 
obfuscation techniques to bypass static analysis-based 
frameworks and it can bypass the most of dynamic analy-
sis tools by checking if it is running on real phones or any 
kind of emulators or sandboxes that used by security ana-
lyser. Additionally, according to the G DATA Security blog 
report in 2017 [8], 750,000 malicious programs that target 
Android have been discovered in the first quarter of 2017 
only and in total more than 3 million new malware samples 
targeting the Android operating system were discovered 
in 2017. Furthermore, McAfee’s Mobile Research team has 
found a new Android malware in 144 “Trojanized” applica-
tions on Google Play, this threat has been named as Gra-
bos [9]. Grabos was initially found in Android application 
called “Aristotle Music audio player 2017” which claimed 
to be a free audio player. McAfee Mobile Research notified 
Google about Grabos in September 2017 and confirmed 
that Google promptly removed the reported application. 

After further research, they found another 143 applica-
tions, before they have been removed from Google Play.

Due to the importance of the Android OS and increas-
ing its security threats the Android malware detection field 
has become one of the most important academic research 
areas. So, a large number of frameworks has been pro-
posed and developed since 2009 until these days. In this 
paper, a comprehensive review has been conducted for 
more than 200 papers that published between 2009 and 
the beginning 2019 in order to shed light on the security 
reality of the Android operating system and the research 
trends that should be focused in future works.

1.1 � Related reviews

A good number of reviews have been conducted previ-
ously to highlight the achieved works in Android secu-
rity domain. In this section, the most important of these 
reviews and their weaknesses will be discussed.

In [10], Android’s security mechanisms and its issues, 
as well as the malware analysis evasion techniques, have 
been discussed. Also, the general malware analysing 
methods, the most important used tools and some of the 
previously conducted state of art frameworks have been 
studied. In the end, a hybrid framework’s schematic model 
has been proposed to be applied in future work. This study 
does not contain any taxonomy for the previous related 
works. Also, there are no discussion or taxonomy for the 
features that can be used in the Android malware ana-
lysing domain. In [11], the Android OS weaknesses have 
been listed, a taxonomy for the previous works has been 
proposed and some of future works directions have been 
discussed. The proposed taxonomy is overly detailed and 
contains overlapped information in some sections. Fur-
thermore, some of research trends such as user interface 
triggering tools and image-based malware detection 
frameworks have not been included on the proposed tax-
onomy. Also, there is no mention to evasion techniques 
that used by the malicious code developers in order to 
avoid the malware detection systems. Moreover, there is 
no discussion or taxonomy for the features that can be 
used in each of Android malware analysis methods. In [12], 
the techniques that can be used in Android malware ana-
lysing systems have been discussed. Also, the techniques 
which used by the malware developers for avoiding the 
detection methods have been explained. In this paper, 
there is no clear taxonomy for the works that conducted 
in Android malware analysing domain. In [13], a detailed 
background about the Android operating system was 
introduced. Also, the Android’s security mechanisms and 
its threats have been discussed. In this survey, a very sim-
ple taxonomy for previously proposed frameworks has 
been introduced without any mention to the features 
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that used in the different analysing methods. In [14], a 
taxonomy for Android malware detection frameworks has 
been proposed and a systematic analysis of more than 300 
papers have been conducted. Also, some gaps in the pro-
posed approaches have been discussed and some future 
works trends were proposed. Although the proposed tax-
onomy is overly detailed it is not comprehensive for all 
research directions in the Android security domain such as 
Policy enforcement frameworks, user interface triggering 
tools and packer/unpacker tools. Furthermore, the survey 
does not discuss a taxonomy for the features that can be 
used on each type of analysing approaches. In [15], 100 
papers have been studied in term of the used features and 
features’ selection methods only, and the used features 
have been classified into multiple classes. In [16], a sys-
tematic review for 124 static analysis works that published 
between 2011 and 2015 has been conducted. The paper 
contains detailed study for static analysis techniques and 
some of its challenges, but it does not contain enough 
discussion for the features that used in this type of analysis 
methods and there is no clear taxonomy for the related 
works. Also, in [17], more than 80 static analysis works have 
been studied and a well taxonomy has been proposed for 
the features that used in the studied works. Furthermore, 
the challenges of static analysis method were discussed, 
and a case study was conducted to test the robustness 
of some anti-malware systems against some obfuscation 
techniques.

It is worth mentioning that the malware visualisation-
based malware analysis research trend has not been dis-
cussed in any of the previously conducted review papers.

1.2 � Motivations and goal

Although there are many review papers have been done 
in the Android security field, there is no comprehensive 
review for all this research area’s aspects. Particularly, 
there is no review paper that contains a comprehen-
sive taxonomy for all research directions so that it can 
help the researchers to know the research trends in the 
domain. Also, none of the previous reviews contains a 
comprehensive schematic description showing all the 
used techniques on a clear phases’ form so that any 
researcher who has no experience in the field can take 
a comprehensive and concise overview about it. We 
believe that any review on any particular research area 
(not only in the field of android security) should con-
tain a clear schematic model that serves as a guide for 
researchers to understand the research problem and the 
mechanisms to address it. Furthermore, there are some 
important work trends in the Android malware analy-
sis domain have not been discussed in any of previous 
conducted reviews. For example, the works that aim at 

converting the malicious apps into images (whether 
grayscale or RGB) and analysing them using image pro-
cessing techniques (a.k.a malware visualisation-based 
analysis frameworks) have not been discussed in any of 
previous reviews. So, we have set the following objec-
tives for this paper:

1.	 Conducting a review study that covers as many as pos-
sible of researches that have been conducted in the 
Android malware analysing domain between 2009 and 
the beginning of 2019.

2.	 Proposing a comprehensive taxonomy so that includes 
as most as possible research trends in Android security 
domain.

3.	 Proposing a detailed taxonomy for the features that 
used in the malware analysis methods.

4.	 Concluding a detailed schematic description model 
(in the studied works’ light) that allows a well under-
standing of the used techniques in this domain with-
out much effort.

5.	 Evaluating the covered works and studying its weak-
nesses in order to figure out the existing research gaps 
and proposing some available future research areas.

The following research questions have been drawn in 
the paper’s objectives light:

RQ1  What are the most important techniques and 
approaches that used in the field of Android malware 
detection, and what are the most important research 
trends of the previous works?

RQ2  What is the most appropriate way to classify the 
studied works within a comprehensive taxonomy that 
includes most of the previous works in the domain?

RQ3  Is it possible to express the techniques and meth-
ods that used in Android malware detection frameworks 
using a comprehensive schematic model inspired from the 
studied works?

RQ4  What are the weaknesses of the studied frameworks, 
the existing research gaps and the trends that should be 
covered the future work?

The main contributions of this paper are:

•	 More than 200 research papers that were published in 
a period extending from 2009 until the beginning of 
2019 have been studied from multiple aspects.

•	 A comprehensive taxonomy for Android malware ana-
lysing works has been proposed so that it can cover 
most of the research in this research field.
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•	 The studied researches have been analysed according 
to multiple criteria, such as a used analysing method, 
used features, used detection method, used dataset, 
etc.

•	 The process of detecting Android malware was 
explained under four phases and using a novel detailed 
schematic manner. To the best of our knowledge, this 
is the first time that the Android malware detection 
techniques have been explained in this way with this 
amount of detail. We called this proposed method a 
Schematic Review Model.

•	 The features that used in the studied works were dis-
cussed in detail by dividing it into multiple classes.

•	 Furthermore, the challenges that facing Android mal-
ware analysing methods were discussed in detail.

•	 Finally, some future works areas have been proposed 
and discussed.

2 � Android background

Android is a free open source operating system based on 
the Linux kernel developed by the Android Open Source 
Project AOSP managed by Google. Google purchased 
Android system from the main developers in 2005, while 
the Android’s official announcement was in 2007, and the 
first Android device appeared on the market in 2008.

2.1 � Android application

Generally, the Android application is written using Java 
programming language and some native code can be 
added to it. Then, the application is compiled to Java byte-
code which translated into Dalvik bytecode and stored 
in.dex (Dalvik EXecutable) and.odex (Optimized Dalvik 
EXecutable) files. In the end, the app is compiled to an APK 
archive which contains the application code (.dex files), 
resources, assets, and manifest file. There are four types of 
components can be defined in Android app, i.e. activities, 
services, broadcast receivers and content providers. The 
activity is the part that provides the user interface in the 
Android application. The service is a general-purpose entry 
point to keep the app running in the background for all 
kinds of reasons. The broadcast receiver is a well-defined 
entry point allow the app to receive a specific event from 
the operating system or another application. The content 
provider acts as a database management system manages 
shared data between apps.

2.2 � APK archive architecture

The Android APK archive contains the following files and 
folders.

2.2.1 � AndroidManifest.xml

It is one of the most important files in the Android appli-
cation, and this file is the first part that read by the OS 
when running any application.

2.2.2 � Classes.dex

Dex code is an optimized bytecode for Android applica-
tions that contains multiple constructs like file header, 
string table, local variable list, class definition table, 
method list…etc.

2.2.3 � Resources.arsc

It is a file containing the application’s resources in a 
binary format.

2.2.4 � Lib/folder

This folder contains the native code libraries.

2.2.5 � Assets/folder

The assets (i.e. images, files, etc.) can be placed in this 
folder and it will be accessed using AssetManager.

2.2.6 � Res/folder

The app’s resources (like icons, music, images etc.) are 
placed in this directory.

2.2.7 � META‑INF/folder

It contains the application’s certificate and composed 
of three essential files namely, MANIFEST.MF, *.SF, and 
*.RSA.

2.3 � Android’s security mechanisms

The Android system is based on three protection mecha-
nisms namely, permission framework, sandboxing and 
application signing.

2.3.1 � Permission framework

It is designed by Google as a protection mechanism for 
system resources so that the program cannot access a 
certain protected part of the system or another appli-
cation unless it has the right permissions. The granted 
permissions are assigned to application’s sandbox and 
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it will be inherited by all application’s components. If an 
application wants to use an API to access a specific sys-
tem resource, appropriate permission must be declared 
in its AndroidManifest.xml file.

2.3.2 � Sandboxing

It is a technique used to isolate applications from each 
other and preventing the arrival of any application to the 
other applications’ resources unless it has a specific per-
mission. In other words, each Android application is exe-
cuted within its virtual machine (VM) instance so that each 
of these instances is executed under a unique user ID to 
isolate each application from the other apps. The applica-
tions can only access other application’s resources by using 
the IPC (Inter-Process Communication) binder mechanism. 
This mechanism can be bypassed by an attack called Privi-
leges’ escalation which illustrated in Fig. 1. Assuming that 
we have three applications A, B and C. The application A 
wants to access a component C1 in the application C, but 
this component requires a permission P1. Since the appli-
cation A does not have the P1 permission, it does not have 
a direct access to the C1 component. But the app A can 
access app B which does not require any permissions and 
it has the permission P1, thus the app A can access the 
required component (i.e. C1 component) through the app 
B. Thus, application A can access to C1 indirectly.

2.3.3 � Application signing

The developers should sign the applications using their 
own self-keys. Therefore, this technology does not provide 
a protection mechanism against malicious applications as 
much as generating confidence in applications that devel-
oped by the same entity. It should be noted that the appli-
cations which signed with the same key can work within 
the same SandBox.

Previously, Google had been using a framework called 
Bouncer, which dynamically was analysing applications by 
executing the app in an isolated environment and exam-
ining their behaviour. Google has recently introduced a 
new framework called Play Protect, which is an always-on 
tool that scans the applications even after its installation 
by the end-user. In addition, Play Protect can scan even 
the applications that are downloaded from the third-party 
markets. Furthermore, it is stated that this framework can 
scanning and verifying over 50 billion apps every day [18].

3 � Research methodology

In this section, we will discuss searching criteria that used 
to select the studied papers and the protocol that used 
to include/exclude the papers from the conducted study.

3.1 � Search criteria

We initially identified the search terms that used to search 
famous academic search engines such as Google scholar, 
Springer, ScienceDirect and IEEE Xplore, ACM Digital 
Library, etc. We used keywords related to analysis meth-
ods such as malware analysis, static analysis, hybrid anal-
ysis, malware detection, and malware visualisation. Also, 
we used some terms related to smartphone and Android 
such as Android malware, mobile malware and smart-
phone attacks. Furthermore, we used general terms such 
as behaviour analysis, anomaly detection, signature-based 
detection and apps classification.

3.2 � Papers selection criteria

Firstly, since 2008 is considered as the actual beginning 
date of the Android operating system, we excluded the 
papers that were published before 2008. After that, we 
excluded the papers which are not related to malware 

Fig. 1   Privilege escalation 
attack scenario



Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

analysing domain. Then, the papers’ abstracts were 
examined to exclude the papers related to personal com-
puters’ malware or other smartphone operating systems’ 
malware such as IOS’s malware. In the end, the following 
types of works are generally included in our survey:

1.	 The papers that aim at developing a malware behav-
iour analysing frameworks using any of the malware 
analysing methods (static, dynamic or hybrid analysis).

2.	 Papers that aim at developing apps’ classification 
frameworks whether using signature-based, machine 
learning-based, etc.

3.	 Papers that aim to develop user interface events’ gen-
erating tools (UI triggers).

4.	 The works that aim at proposing techniques for avoid-
ing malware detection tools (code packer tools).

5.	 The works that aim at proposing tools that can be used 
to retrieve the original code from the obfuscated one 
(code unpacking tools).

6.	 The works that aim at proposing policy enforcement 
frameworks that can be applied whether at app instal-
lation or execution time.

On the other hand, we excluded the papers that are 
not related to the previous six trends. We will repre-
sent some examples of excluded works in the following 
paragraph.

For example, Xie et al. [19] aims at developing a mal-
ware behaviour detection framework for mobile devices 
generally and since we aim to study the works that aim 
at developing android’s malware analysing frameworks, 
therefore this paper has been excluded. Also, Vidas et al. 
[20] and Bartel et al. [21] aims in developing tools that 
help the developers in specifying a minimum set of 
permissions required for a specific Android app. Since 
these two papers are out of our review’s scope so it was 
excluded. In [22], a malware that able to retrieve the user 
credentials from the apps’ memory has been developed. 
This type of papers is out of our review’s scope, so it has 
been excluded. We also excluded [23] which aims to 
analyse the potential privacy and security risks of in-app 
advertisements. Furthermore, we excluded some works 
that do not have a direct android malware analysing 
frameworks development goal, for example, in [24] an 
assessment of the presence of malware in third-party 
Android markets using well-known anti-virus engines 
was presented. To this end, a dataset was collected from 
nine different third-party markets in three geographical 
regions (China, Europe, Russia) and multiple statistical 
analyses were performed on the collected dataset. Also, 
in [25], multiple studies including internet survey have 
been conducted in order to test the effectiveness of the 
Android permissions mechanism.

4 � Proposed taxonomy

This paper aims to propose a comprehensive taxonomy 
such that include as many Android security research 
trends as possible. Our taxonomy is based on the papers’ 
goals and the problems that are tried to solve within the 
works. We will explain the proposed taxonomy in detail, 
and in the same context, a taxonomy for the features that 
used in the various analysing methods will be proposed. 
Also, a classification for the weaknesses of the used analys-
ing methods has been presented and discussed in detail. 
Figure 2 illustrates the proposed taxonomy. We will divide 
the studied works into five main trends each of which’s 
details will be discussed.

4.1 � Behavior analysis framewoks

This research trend covers all works that aim at proposing 
frameworks for analyzing and classifying the behaviour of 
malicious applications. We classified these works accord-
ing to two criteria. The first one is the used technical meth-
ods, which were divided into four main phases each of 
which contains different methodologies and techniques 
that have been used in the studied works. The second cri-
terion is the challenges facing the used analysing method 
which have been attempted to address within the specific 
studied work.

4.1.1 � Used techniques phases based taxonomy

We have divided the Android malware detection process 
in the light of the studied works into four phases, namely, 
pre-processing phase, features extraction phase, features 
selection phase, and the detection phase. We will classify 
the studied works based on the techniques used in these 
phases. In the following sections, the details of each of 
these phases will be discussed.

4.1.1.1  Pre‑processing phase based taxonomy  In this 
phase, the dataset is prepared and processed to be in a 
suitable format to extract the features that will be used 
to generate patterns that describe the behaviour of the 
applications. This phase is very important in the malware 
detection process because it determines the nature and 
strength of the features that will be extracted to construct 
apps’ patterns and therefore this is reflected upon the 
strength of the used classifier. In general, there are four 
main methods used in this phase: visualisation-based 
analysis, static analysis, dynamic analysis and hybrid 
analysis. In the hybrid analysing method the application 
firstly analysed statically, and appropriate static features 
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are extracted, then the app is analysed dynamically to 
extract dynamic features. These four methods and some 
examples of each of which will be discussed in the follow-
ing sections:

A.	 Visualisation-based analysis

Although image processing techniques are widely used 
in detecting malicious software targeting desktops, 
and despite these technologies have proven to be very 
effective in this area, these techniques were used very 
limitedly in the detection of malicious software target-
ing smartphones. However, this method has been used 
in some of the studied works, for example in [26], a 
framework has been proposed relies on converting the 
application’s source code into an RGB image and using 
deep learning techniques to predict the app’s class. To 
this end, the application was decompressed and its DEX 
code was extracted and represented as byte-code. After 
that, the colour channels’ values (i.e. R, G, and B) were 
represented by splitting the hexadecimal representa-
tion of the instructions into three sections. At the end 
of this phase, the apps’ source codes were converted 
to RGB images. Then the convolution neural network 
has been used as a prediction model in order to pre-
dict the apps’ class. In [27], four files have been selected 
from the contents of the APK archive (i.e. Classes.dex, 
AndroidManifest.xml, Resources.arsc and CERT.RSA) 
to be converted to grayscale images. After that, GIST 

features were extracted from the constructed images 
and used as an input to Random decision forests classi-
fier to classify the applications into malicious or benign. 
In [28], the source code of the application has been con-
verted to grayscale images by decompressing the APK 
file and extracting the bytecode. After that, the Opcode 
Sequences with length 2 was extracted from the app 
source code. Then, the extracted code sequences were 
weighted based on its frequency in the training samples, 
and the weight values were considered as pixels in the 
app’s images. After that, Latent Dirichlet Allocation (LDA) 
algorithm has been used to select the best sequences 
and reducing the dimensions in order to reduce the 
image noise and improving the detection accuracy. In 
the end, the optimized pixels were stacked in a vector 
and used as a signature to detect the Ransomware apps. 
In [29], a method has been suggested to simplify app’s 
reverse engineering depending on the conversion of 
the application’s structure into an image and manipu-
lating apps’ source using image processing techniques. 
The proposed method depends on app decompress-
ing, DEX code extraction, dex code sections identifying 
and mapping each byte in the code into a single pixel 
in the image such that the pixel colour has been used 
to highlight the byte value. In [30], the static analysis 
was used to extract the application’s source code and 
separating the instructions according to their impor-
tance into groups which were digitized based on Sim-
hash and Djb2 hash functions. The obtained hash values 
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Fig. 2   The proposed taxonomy
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were converted into an image. Finally, the convolutional 
neural network has been used to classify the applications 
into benign or malicious.

B.	 Static analysis

It is the most widely used and preferred method by many 
researchers, thanks for its low computational time, ease of 
implementation and effectiveness to some extent. In this 
method, the app source code is analysed without being 
executed in an emulator or real device. To this end, firstly, 
the APK archive is extracted to obtain classes, manifest 
file, meta-data information and media files. In this stage, 
the app’s source code format is dex bytecode which not 
easy to be handled so it can be de-compiled to Java or 
Smali code to make it readable and easier for processing. 
Multiple tools can be used in this step, such as Apktool 
[31], which an open-source reverse engineering tool 
that can decompress APK archives and extract nearly the 
same of original contents of the applications, including 
the manifest file and all.Dex files as well as all other app’s 
resource folders. As mentioned before, the DEX files can 
be converted to Smali code which is a middle representa-
tion between Dex bytecode and Java, easy to be read and 
effective features can be extracted easily from it. So, Smali 
code representation has been used extensively in the 
previous researches to extract the code-based features. 
Table 1 illustrates the most important tools that have been 
used in the static analysis-based researches which covered 
in this study.

It should be noted that these tools are commonly 
employed at app repackaging techniques to disassem-
ble, modify, re-compile the APK archive. The re-packaging 
techniques are commonly used by malware developers, 
such that malicious code is added to regular applications 
and the repackaged malicious app is republished either in 
official or third-party stores.

As it was mentioned before the static method is the 
most popular analysing method, so this method is used in 
a lot of studied works. We will list some studied works that 
use the static analysis method and the rest of the works 

will be listed in one comprehensive table. In [32], a method 
for detecting apps’ repackaging has been proposed. The 
proposed method depends on the fact that the attacker 
does not change some original application’s data such as 
app name and app icon in order to benefit from the popu-
larity of the original application. The framework consists of 
two tools: the first one is a client-side tool, which extracts 
the features from the application and sends them (the 
extracted features) to the second tool. The second tool is 
a server containing a database to be compared with the 
sent features to make a decision about the application. 
In [33], a static analysis-based framework has been pro-
posed, where each of used permissions, sensitive APIs, 
monitoring system events and permission rate have been 
used as a feature for training and testing the used classi-
fier. Then, a principal component analysis (PCA) algorithm 
was adopted for pre-processing the extracted features and 
an ensemble Rotation Forest RF has been used to classify 
the android apps into malware or benign. A dataset con-
taining 2130 samples has been used to evaluate the pro-
posed method’s performance. Furthermore, the obtained 
results were compared with the results of a Support Vector 
Machine (SVM) model under the same experimental condi-
tions. In [48], several challenges that facing the malware 
detection methods have been reviewed and some attacks 
that the conventional machine learning classifiers can fail 
to address have been discussed. Based on these consid-
erations, three types of attacks that can poison datasets 
to demotivate the classifiers were presented and tested.

To address these attacks a detection system called 
KUAFUDET that significantly reduces false negatives and 
improves detection accuracy has been proposed. After 
that, Support Vector Machine (SVM), Random Forest (RF), 
and K-Nearest Neighbour (CNN) machine learning algo-
rithms have been adopted as classifiers to distinguish mali-
cious applications from benign ones. In [49], multiple static 
analysis features including permissions, requested permis-
sions, filtered Intents, restricted API calls, hardware proper-
ties, code-related patterns, and suspicious API calls have 
been used to train and test the proposed model. In [50], a 
static analysis-based method for Android botnet detection 

Table 1   The most important static analysis tools

Tool name Description

Jd_gui [34] It is a standalone graphical utility that displays.class files as a Java code
Dex2jar [35] It is used to convert dex files to jar files and vice versa
Procyon [36] It is a suite of Java metaprogramming tools focused on code generation and analysis
Ded, Dare [37] It is used to convert dex bytecode files to.class files which can be processed by existing Java tools 

such as Jd_gui tool
Androguard [38] A python tool that can be used to Disassemble/Decompile/Modify the DEC/ODEX/APK files’ format
Jadx [39] It is used to convert dex bytecode to java
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has been proposed. First, the requested permissions and 
used features have been extracted from a dataset that 
contains benign and bot applications to create uniq++ue 
patterns that can identify botnet malicious activities. In 
the end, the machine learning techniques have been 
adopted to create classification models that able to clas-
sify applications as benign or bot based on the created 
patterns dataset. In [51], an automated malware detec-
tion system called MalPat that use permission-related APIs 
and Random Forest classifier has been proposed. To build 
the proposed model the APIs have been extracted from 
each app and the permission-API correlations have been 
revealed to construct unique patterns that can be used 
to distinguish malware from benign apps. The proposed 
method has been tested using a large-scale dataset and 
the obtained results have been compared with some pre-
vious approaches’ results.

C.	 Dynamic analysis

Although the static analysis method is preferred by many 
researchers due to its speed, applying easiness and its low 
computational time it suffers from many weaknesses and 
shortcomings such as the inability to address the code 
obfuscation techniques or malicious content dynamic 
loading. The second method that can be used in the pre-
processing phase is dynamic analysis. In this method, the 
application is executed in an isolated environment and 
the normal use of the application is simulated in order to 
collect as much information as possible about application 
behaviour. To this end, the application and a user interface 
events generating tool are installed in an emulator or a real 
device to simulate the app’s normal execution and collect 
its behaviour. We have divided the works that used this 
method based on the techniques that used to track the 
behaviour of the application into hook-based and log tools 
based. We will discuss these two types in the following 
paragraphs:

1.	 Log tools based

In this methodology, the application is executed in a real 
device or emulator to monitor its behaviour using well-
known logging tools. For example, in [52], a cloud-based 
dynamic analysis framework is proposed to detect android 
malware based on monitoring the Android applications’ 
runtime behaviour, analysing the malicious URLs and cor-
relate them with DNS service network traffic to find the 
presence of malware running at the network level. In this 
work, some open source tools have been used for app 
behaviour monitoring and analysing. In [53], a method 
for classifying android apps into benign and malware 
based on monitoring app’s network behaviours has been 

proposed. The app outgoing network traffic has been 
monitored by running Tcpdump on the analysing envi-
ronment. A machine learning classifier (i.e. Random For-
est Enemy Learning Algorithm) has been applied to obtain 
behavioural models for each normal application category. 
If a new application’s behaviour can be classified to any 
normal category it will be labelled as a benign app oth-
erwise it will be labelled as a malware. In [54], a resource 
consumption features (i.e. network traffic, battery con-
sumption and battery temperature) have been monitored 
using some logging tools. Then, multiple machine learning 
algorithms have been adopted in order to distinguish mal-
ware apps from benign ones. Several experiments have 
been conducted using different combinations of these 
three features and machine learning algorithms. In [55], 
a dynamic analysis-based framework has been proposed 
to detect android malware using machine learning tech-
niques. To this end, a tool that extracts dynamic features 
automatically has been implemented and multiple experi-
ments have been made to compare between emulator-
based and phone-based malware detection. The features 
have been logged and extracted from the phone using 
Logcat logging tool and some scripts that written for this 
purpose. The features that extracted from each of the real 
phone and emulator have been used to train multiple 
machine learning classifiers separately and the obtained 
results were compared with each other.

2.	 Hooks based

The second used dynamic analysis methodology is known 
as instrumentation-based or hook-based systems. In this 
method monitoring points (hooks) are embedded within 
the code to record the application activities during the 
execution. These hooks can be used in monitoring the 
application execution, collecting information about the 
methods’ pattern, tracing the executed instructions, 
retrieving the sequence of events or monitoring stored 
data flow. There are two trends for implementing instru-
mentation-based systems in the previous studies namely, 
app-level instrumentation and operating system-level 
instrumentation:

•	 App level instrumentation:

In the first method, the application is disassembled, and 
its source code is modified by adding methods that can 
log its behaviour (these methods called as hooks), and 
the app is reassembled. The imbedded hooks track the 
app behaviour during the execution and record a log for 
important behavioural information such as data flow or 
taint flow. For example, in [56], an APK-level instrumen-
tation method has been used to monitor Android apps’ 
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suspicious API and understanding the malicious behav-
iours of Android apps. The proposed method does not 
require any OS level changes, so it is compatible with all 
versions of the Android operating system. The approach 
depends on APK file reverse engineering, instrument code 
addition and APK repackaging. After that, the APK file 
will be executed in an emulator to retrieve the potential 
suspicious behaviour based on monitoring the sensitive 
APIs. In [57], a hybrid system called AspectDroid that aims 
to detect apps’ suspicious behaviours independent on 
Android runtime and system releases has been proposed. 
An instrumentation engine has been designed in order 
to achieve data flow analysis, resource abuse detection 
and suspicious behaviour analytics. In the static phase, 
the applications have been reverse engineered, the code 
that will be executed alongside the original code to per-
form custom logging and other analytical functions have 
been injected and finally the app has been recompiled. 
The instrumented application has been executed dynami-
cally to track and log runtime events.

•	 Operating system level instrumentation:

In the second method, the operating system is modified 
by adding monitoring points so that it can log the applica-
tion behaviour during app execution. In [58], the Android 
operating system’s source code has been modified to 
insert hooks for API-level monitoring. Also, kernel level 
modifications have been conducted to make monitor-
ing at the kernel-level. In [59], a hook-based taint analysis 
framework called TaintDroid has been developed on the 
top of Android system to track sensitive data flow within 
installed applications. The main goal of the proposed sys-
tem is detecting and analysing sensitive information that 
leaving the system. Four taint propagation level namely, 

variable-level, message-level, method-level, and file-
level have been tracked in the proposed system. In [60], 
DroidScope has been presented, which is a fine-grained 
dynamic binary instrumentation tool for Android that 
embeds two levels of hooks namely an operating system 
level hooks and Java level hooks. The proposed tool is able 
to demonstrate the interactions between Java and native 
components of malware samples. Also, the tool provides 
dynamic analysis of native instructions as well as Dalvik 
byte code. Table 2 illustrates the most important tools 
used in the dynamic analysis based researches that cov-
ered in this study.

D.	 Hybrid analysis

This method combines static and dynamic analysis in 
order to obtain a more accurate analysis of applications. 
Generally, the apps are reverse engineered to extract static 
features from the source code, after that, the apps are exe-
cuted in an isolated environment, i.e. an emulator or a real 
device, to extract dynamic features. Therefore, despite its 
overhead and implementation complexity, this analysis 
method is considered the most profound and compre-
hensive method. Although the hybrid analysis method is 
relatively less commonly used in previous works, this type 
of analysis has been used in a number of works among the 
studied articles. For example, in [61], a hybrid Android mal-
ware analysis approach called mad4a has been proposed 
in order to benefit from the advantages of both static and 
dynamic analysis techniques. In the static analysis phase, 
the permissions have been extracted from the applica-
tion’s Manifest file and the extracted permissions have 
been mapped with the corresponding API calls in the Java 
source code. In the dynamic analysis phase, the malware 

Table 2   The most important used dynamic analysis tools

Tool name Description

MonkeyRunner [40] Application UI trigger tool that can send random events such as touching the screen, swiping or pressing a 
widget…etc.

DroidBot [41] Input generator that can send random or scripted input events to an Android app so that it can achieve higher 
test coverage and generate a UI transition graph (UTG) after testing

Android Debug Bridge [42] A versatile command-line tool used to communicate with the device, installing, debugging apps or providing 
access to a Unix shell to run commands on a device

Logcat [43] A command-line tool that dumps the log of system messages
Droidbox [44] It is a dynamic analysis platform that employs an integrated system containing TaintDroid with a modification 

of Android’s core libraries
Robotium [45] Robotium is an Android test automation framework that has full support for native and hybrid applications. 

Robotium makes it easy to write powerful and robust automatic black-box UI tests for Android applications
Strace [46] A Linux utility used to monitor interactions between processes and the Linux kernel. This tool is used to collect 

logs in order to record the executed Linux kernel system calls
Tcpdump [47] It is used to capture and store all the network traffic in a Pcap file
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and benign apps have been installed in the emulator 
and 500 different UI events have been generated using 
MonkeyRunner tool to simulate the app’s normal usage. 
Then, the log file has been traced to monitor executed 
application’s network usage (i.e. the size of downloaded 
or uploaded data and the number of incoming and out-
going connections). Also, an algorithm to detect the per-
missions’ over-privilege has been proposed (permissions’ 
over-privilege means that the applications demand more 
permissions than they actually use). In [62], a deep learn-
ing-based hybrid analysis framework called DroidDetec-
tor has been proposed to differentiate between benign 
and malicious Android applications. A total of 192 binary 
features were extracted using static and dynamic analy-
sis, and the extracted features were used as input to the 
deep learning model. A number of experiments have been 
conducted using the proposed tool to verify the ability of 
the Deep Learning model to detect Android malware. The 
obtained results have been compared with the results of 
some conventional machine learning algorithms, namely 
Naive Bayes, C4.5, Logistic Regression, SVM and Multi-
Layer Perceptron plexus. In [63], a hybrid analysis frame-
work has been proposed to detect Android malware based 
on static features such as required permissions and sen-
sitive API calls as well as some dynamic features such as 
network activity, file system access and interaction with 
the operating system. The extracted static and dynamic 
features have been used to train and test some machine 
learning algorithms i.e. Support Vector Machines (SVM), 
Decision Tree (C4.5), Artificial Neural Networks (MLP), Naive 
Bayes (NB), K-Nearest Neighbours and Bagging predictor. 
In [64], a hybrid analysis platform called Andro-Dumpsys 
has been proposed to isolate malwares from benign apps 
and classify the malwares into its families. The proposed 
method uses dynamic analysis for extracting Odex byte-
code using RAM acquisition to obtain the fingerprint. Also, 
static analysis is used to extract multiple static features 
that have been used with the obtained dynamic features 
in order to classify Android applications. In [65], an attack 
tree was adopted to detect Android malware and a hybrid 
analysis prototype called AMDetector was proposed. The 
static analysis has been used to record app attacking abili-
ties and suspicious applications’ components, while in the 
dynamic phase, the events have been sent to the trigger 
tool based on the application components and the app’s 
runtime behaviour was examined against attack capabil-
ity. In [66], a hybrid Android malware analysing framework 
has been proposed. The permissions, API methods and 
classes have been extracted statically from APK archive, 
and system calls, event handler and network traffic have 
been traced dynamically. The extracted static and dynamic 
features have been used to generate behavioural patterns 
for Android apps classification.

Figure 3 shows the proportion of the analysing meth-
ods that used in the pre-processing phase in the studied 
works.

4.1.1.2  Features extraction phase based  After the pre-pro-
cessing phase, the dataset will be more flexible and eas-
ier to be read and handled. In features extraction phase, 
appropriate features are extracted to form patterns that 
will be used for classifying applications and detecting 
any potential malicious behaviour. The extracted features’ 
type and nature are varying according to the analysis 
method which performed in the pre-processing phase 
(visualisation, static, dynamic or hybrid). In this work, the 
features were divided into static features, dynamic fea-
tures, hybrid features and image-based features, to the 
best of our knowledge, some of the suggested features’ 
subclasses is novel.

A.	 Static features

In general, static features depend on parsing the app’s 
source code to extract important information such as 
sensitive instructions, variables names, methods, classes, 
packages, strings, code context and sequence, control 
flow, or data flow. We will classify the static features as 
follows:

1.	 Manifest based features

The manifest file is the most important file in the 
Android application and considered as a controller or 
a roadmap that specifies how the application will be 
executed. Moreover, all components of the application 
i.e. activities, services and content providers must be 
declared in this file before using within the code. This 
file also contains a lot of other information that describes 
application behaviour such as, actions, intents, intent-
filters, package name, category…etc. Most importantly, 
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Fig. 3   The used analysis methods proportion
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this file contains the permissions that required by the 
application at installation time and which are assumed 
to be important for the application to work correctly. 
Due to the importance of this file, its contents have been 
used extensively as features in the studied works. The 
Manifest-based features that used in the studied works 
can be classified as follows:

•	 Permissions A large number of the studied works 
depend on this type of features, such as, required per-
missions which are defined using <uses-permission>. 
For example, in [67], permission-based static analysis 
Android malware detection system has been proposed. 
The proposed system consists of three components: 
the first component is a signature database that stores 
behaviour fingerprints and the analysing results. The 
second component is an Android client used by end 
users to provide analysis requests. The third compo-
nent is a central server used to communicate with both 
the signature database and the smartphone customer 
and manage the entire analysis process. The logistic 
regression has been used to classify a program as mal-
ware or benign, and 88% detection accuracy rate has 
been gotten. Furthermore, in some works, the permis-
sions have been used with some other types of features 
such as code-based features or app metadata-based 
features. For example, in [68], the app’s permissions and 
some other metrics have been used as features and the 
K-means algorithm has been adopted to cluster 18,147 
benign Android applications into business apps or 
tool apps. Also, in [69], a lightweight static analysing 
method has been used to extract multiple features 
such as permissions, API calls and network addresses, 
then the extracted features have been embedded in 
a vector to create specific patterns that used in apps 
classification.

•	 Intent filter It is a powerful feature that can be used 
to detect suspicious behaviour of applications, as the 
intent filter can describe the exact details of the inten-
tions of the application, including the actions, data, 
and intent’s categories. For example, the Intent filter is 
usually used by malware apps to receive events such 
as BOOT_COMPLETED to launch malicious activity. This 
type of features was used extensively in previous works, 
for example [70] aims to study the efficiency of intents 
(explicit and implicit) in Android malware detection. 
To this end, a static analysis tool called AndroDialysis 
has been presented. The proposed tool extracts the 
intents (implicit and explicit), intent-filters and per-
missions from the applications, then multiple experi-
ments based on different feature combinations (i.e. just 
intents, just permissions and intents-permissions) were 
performed. It was concluded that the android’s intents 

are more effective than android’s permissions in mal-
ware detection.

•	 Hardware requirements The app’s hardware access 
requests (which are translated by requesting specific 
permission in the Manifest file) have been used as a 
feature to detect malicious behaviour of the applica-
tions in some works, like [69, 71].

•	 Other manifest features In some works, some other man-
ifest file’s information has been used, such as activities, 
services, package name and Intents. For example, in 
[72] each of number of activities, number of services 
and number of receivers were used with some other 
code-based features to distinguish between benign 
and malware apps.

2.	 Code-based features

This type of feature refers to all types of features that 
extracted from the app’s source code whether Java or 
native code. The features extracted from the source code 
are very important for conducting a deeper analysis. In 
the studied works, the code-based features have been 
extracted from a variety of the source code’s representa-
tion including opcode, bytecode, Smali and java code. We 
will classify the used code-based features as follows:

•	 Instructions and commands based features The code is 
parsed to extract certain instructions that may describe 
the potential suspect behaviour of the application. The 
following instructions and commands-based features 
have been used in the studied works:

1.	 API calls The Android OS provides a wide range of 
APIs that can be used by the developers to access 
operating system resources or hardware in the 
device. The API calls are one of the most widely 
used features in the malware detection domain. 
Generally, these features are extracted by prepar-
ing a list of suspicious APIs and comparing it with 
the used APIs in the application’s source code. API 
calls were used in a lot of works such as in [73], 
where a static analysis system called DroidMat 
has been presented. The proposed framework 
has used each of permissions, intents, and API 
calls as features to detect Android malicious apps. 
In [74], a static analysis framework called MOC-
Droid has been proposed to discriminate malware 
and benign-ware. A semantic intention has been 
extracted from third-party API call combinations 
(Import terms) and two sub-models that keep only 
relevant behaviours for malware and benign appli-
cations have been created. A candidate program 
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will be evaluated against these two sub-models to 
measure whether it fits better with benign-ware 
or malware. In some other works, API calls have 
been used with API’s package level information 
and parameters. For example, in [75] a method 
that depends on API level information within the 
bytecode has been proposed to convey substan-
tial semantics about the app’s behaviour. The pro-
posed method focuses on frequently used critical 
API calls, API’s package level information, as well as 
API’s parameters. Some other works are based on 
mapping the API with the desired permissions. For 
example, in [76], a tool called Stowaway that can 
detect permissions over-privilege by extracting 
the API calls and matching them with the required 
permissions has been proposed.

2.	 Specific instructions Some specific instructions or 
library calls that used frequently by malicious soft-
ware developers have been used in previous works 
to detect malware. For example, DexClassLoader 
is an API that can be used by attackers to load the 
malicious content and execute it at the app execu-
tion time. Also, Crypto API is a library that can be 
used to encrypt the strings or other contents in the 
application. Each of DexClassLoader and Crypto 
APIs have been used in [77]. Also, other features 
such as Import terms were used in [74]. Moreo-
ver, the method calls and function arguments and 
instructions were used in [78]. Furthermore, some 
dangerous Linux commands such as Su, Chmod 
and Exec have been used as features to reveal the 
apps’ malicious behaviour in some static frame-
works like [48, 79]. Also, in [79], the apps have 
been checked to detect the presence of embed-
ded Dex, Jar, So, or ELF files which can reveal the 
apps’ behaviour.

•	 Strings and network addresses The most of malicious 
applications connect to a command and control 
(C&C) server to send data which can be collected 
from the victim as well as receive commands from 
the attacker. To this end, the server’s address is placed 
within the code, so the source code can be parsed 
to find any IP or DNS address that can be used as a 
feature for identifying the program’s behaviour such 
as in [69, 80]. Also, the strings in the app’s source code 
give a great indication to the application behaviour, 
thus, it (the strings) have been used in many previous 
studies such as in [81–83].

3.	 Semantic features

We have categorized some of the features that have 
semantic characteristics, or any combination of other 
features displayed in a semantic way as semantic fea-
tures. In other words, the semantic features include code-
based features, manifest-based features or even program 
description-based features that combined or represented 
in a semantic way. The most important used semantic fea-
tures in the studied researches are:

•	 Control flow graph It is one of the most popular used 
applications’ behaviours analysing method. In this 
method, the application’s source code is represented 
as a directed graph so that the nodes represent the 
instructions or code blocks and the edges represent 
the control flow between two nodes, i.e. represents 
the execution path passes between the instructions. 
Thus, CFG is a directed graph represents all possible 
execution paths in order to analyse all the execution 
scenarios of the application. In [84], the same concept 
of control flow graph was used to build API calls’ graphs 
and construct semantic signatures to detect unknown 
malware variants. Also, in [85], the control flow graphs 
have been built based on native code for constructing 
semantic signatures that can be used to detect mali-
cious behaviour in both bytecode or native code.

•	 Data dependency graph DDG is a common program 
analysis structure which represents inter-procedural 
flows of data through a program [86]. DDG is a directed 
graph such that its nodes represent the instructions in 
the application, and its edges represent data depend-
ency between the application’s instructions. Data 
dependency is obtained by data flow analysis, where 
a node n

1
 is connected to a node n

2
 ( n

1
 → n

2
 ) if n

2
 uses 

a variable defined by n
1
 . This type of features has been 

used in some previous works, for example, in [87], the 
data flow analysing method has been used to construct 
a data dependency graph for user inputs and API calls, 
and the control flow analysis was used to reveal the 
Intent-based inter-app or inter-component events.

•	 Taint flow In this type of analysis, a sensitive data that 
produced by an API is tracked from the source up to 
the target. The API which produces the data is called 
source and the API that send the data to network, file 
or another target is called sink. The source-sink data 
flow strings are generated to represent the spread-
ing of sensitive data in the apps. So, these strings 
can be used as a pattern to identify apps’ behaviours. 
This type of features has been used in some previous 
works. For example, in [88], a framework for detecting 
information leakage based on source-sink API track-
ing has been proposed. Also, in [89], a flow analysis-
based framework has been proposed for detecting 
the potential malicious behaviour based on tracking 
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the sensitive information from the source method to 
the sink method.

•	 Other semantic features In some works, a semantic 
pattern was generated based on the app’s description 
which crawled from the app store and the generated 
pattern has been compared with the actual behaviour 
of the app. For example, in [90], the app’s description 
was used to expect the permissions which necessary 
for app’s proper work. Then the expected permis-
sions were compared with the actual permissions that 
used in the app. It should also be noted that the code 
sequence can be used as a semantic feature to differ-
entiate between benign and malicious applications. 
For example, in [91], the short sequences of the appli-
cation’s opcodes (i.e. opcode n-grams) was used to 
construct feature vectors that used in Android apps’ 
classification. Moreover, the number of common per-
missions between a given application and a specific 
category pattern has been used as a feature in [92].

It is worth noted that a mix of variety static features 
types was used in the studied works. For example, in 
some works, a mapping between API calls and requested 
permissions has been used to avoid permission-over 
privileged such as in [93, 94]. Moreover, in [95], the per-
missions have been used with some app metadata like 
app’s price, a number of downloads, user rating, and 
app description to distinguish the benign form malware 
apps. Furthermore, in some works, the permissions have 
been used with some code-based features such as API, 
network addresses, intents…etc. such as in [69].

4.	 Application’s metadata-based features

We have classified the features that extracted from 
the description of the application or any information 
attached to the app as metadata features, this type of 
features includes the following:

•	 App certificate’s information It includes the contents of 
the META-INF folder, which contains the application’s 
signature, certificate, and the key that used to sign 
the app. This information can be used to compare 
applications’ developer in some works. For example, 
in [32], the developer’s signature has been used with 
some other descriptive information to detect the 
applications’ re-packaging.

•	 Play store descriptive information This type of features 
includes all application-specific evaluation informa-
tion that can be extracted from the store such as 
price, number of downloads, users rating, and so on. 
For example, in [95], the program rating information 

was used alongside some other descriptive informa-
tion for categorising the Android applications.

•	 Other descriptive features Some other descriptive fea-
tures have been used in some works. For example, APK 
file’s hash value, application’s name and application’s 
icon have been used in [32]. Also, the number of lines 
in the manifest file, size of the APK archive and number 
of files and folders within the APK archive have been in 
[77].

B.	 Dynamic features

This type of feature includes all features that can be col-
lected during application execution such as system calls, 
network activity, file system usage, etc. We will explain the 
most important of these features in detail:

1.	 System calls It is one of the most used dynamic fea-
tures as an application needs to connect to the OS 
using dedicated system calls (switch to kernel mode) 
to achieve some tasks. The system calls can be tracked 
and stored in a log file that can be used in analysing 
the behaviour of the application. In some previous 
works, the system calls sequence or system calls’ fre-
quency have been used to create patterns that reflect 
the behaviour of the applications in a semantic man-
ner. For example, in [96], the sensitive APIs’ sequence 
and the number of used API call have been extracted 
during program execution then an improved Naive 
Bayes classification model has been used in order to 
classify the apps into malware or benign. In some other 
works, the system service calls’ sequences were used 
instead of the system calls because that the system 
calls are composed of the function name which misses 
parameters information and cannot reveal the exact 
application behaviour. For example, in [97], a dynamic 
analysis framework based on the co-occurrence 
matrix of the system service calls has been proposed 
to detect android malware. Firstly, service interface 
call information of the running Android applications 
has been extracted to obtain the system service call 
sequence co-occurrence matrix. The obtained matrix 
has been normalized to construct vectors which have 
been used to train multiple machine learning classi-
fiers.

2.	 Network behaviour In general, all malicious applica-
tions connect to the network in order to send the col-
lected data, receive commands from its remote server 
or any other reason. Therefore, the network traffic that 
generated during the app’s execution gives a good 
indication to the app’s behaviour, so, this feature has 
been used in many previous works. For example, in 
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[53, 98], network activities and some other dynamic 
features have been used to differentiate between mal-
ware and benign-ware.

3.	 Resources consumption-based features Mobile phones 
are generally limited in terms of resources, such as bat-
tery, processor and memory. Therefore, the resource 
consumption has been used as a feature to detect 
malicious applications in some of the previous works. 
Generally, this type of works is based on analysing the 
difference between benign and malicious applications 
in terms of resource consumption since malicious 
applications generally consume more resources than 
the benign ones. This can be explained in that most 
of these applications (malicious apps) perform a task 
in the background or access hardware resources such 
as CPU, memory, Bluetooth and wireless devices [54]. 
Also, this type of features has been used with some 
other features for training and testing many machine 
learning classifiers in [99].

C.	 Hybrid features

As its name implies, this type of features includes a com-
bination of static features and dynamic features to get a 
more accurate analysis and detecting any potentially mali-
cious behaviour of applications.

D.	 Image features

This type of feature includes all the features which 
extracted from images whether grayscale or RGB images. 
As mentioned previously, the analysing methods that 
based on converting the malware source into an image 
have been used in a limited number of previous works. 
There are two trends followed in this type of works, the 
first one, image-based features are extracted to be used in 

training of the conventional machine learning algorithms 
that used in apps’ classification. In the second trend, the 
malware’s images are fed to deep learning models which 
can extract appropriate image’s features automatically. 
For example, in [27], the GIST feature was extracted from 
images and used in a Random decision forests classifier 
training. Also, in [100], a method that based on the visu-
alization of APK files as various image formats (Grayscale, 
RGB, CMYK and HSL) has been presented. After that, the 
GIST feature has been extracted from each image to create 
a features dataset which used to train and test multiple 
machine learning algorithms (i.e. Decision Tree (DT), Ran-
dom Forests (RF), and K-Nearest Neighbour (KNN)). In [28], 
weights have been given for each pixel in the image and 
the best sequence of pixels have been chosen and used 
as a signature for detecting the malicious applications. 
In the rest of works, the deep learning techniques have 
been used, for example, the convolution neural network 
has been used in each of [26, 30].

Figure 4 shows the proportion of features that used in 
the studied researches. Also, Fig. 5 illustrates the proposed 
taxonomy for the features that used in the studied works.

4.1.1.3  Detection phase  After the feature extraction 
phase, the patterns that can be used in detecting the 
apps malicious behaviour or in classifying benign apps 
into multiple categories will be generated based on the 
extracted features. In most of the studied works, these 
patterns are represented as binary vectors, where 0 rep-
resents the case when the feature is not used and 1 rep-
resents the case when the feature is used. It is possible to 
use labelled or unlabelled data according to the detection 
method. In general, there are two approaches were used 
in the researches that covered in this paper, namely, sig-
nature-based and machine learning based:
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A.	 Signature-based approach It is one of the most com-
mon traditional malware detection methods, where, 
a pattern for each application or set of patterns that 
describe the behaviour of a particular malware family 
are generated and stored in a signature database. After 
that, in order to examine the behaviour of any applica-
tion, its pattern will be extracted and compared with 
the patterns that stored in the signature database. In 
case of matching the app’s pattern with any malicious 
signature, it will be judged that the app contains a 
malicious behaviour. This method was widely used to 
detect malicious applications that targeting comput-
ers, for example in [101], a hybrid method that based 
on genetic algorithm and Tabu search algorithm has 
been proposed to build a signature database for 
detecting malware targeting computers. Moreover, 
this method is used to detect Android malware, for 
example, in [102], the patterns database was created 
depending on the topology graph that constructed 
based on APIs and classes to reflect the actual behav-
iour of the Android apps. Next, new applications were 
analysed by matching their topology graph with the 
signature database, so that if the examined app con-
tains a subgraph which is monomorphic to one of the 
database’s signatures the used API set in every node 
will be compared. If the similarity of API sets reaches 
a specified threshold the app will be considered as 
malicious. Also, in [103], a statistical features-based 
signature approach has been proposed to detect 
obfuscated and repackaged malware variants. The pro-
posed method uses statistically robust features that 
constructed using similarity digest hashing scheme 
(SDHash scheme) to generate a variable-length sig-
natures database. In [104], a code path-based signa-

ture database has been constructed to rank apps as 
high-risk, medium-risk and low-risk. In [105], a Pro-
gram Dependence Graphs (PDG) has been used to 
construct semantic code-based signatures to detect 
the code similarity between apps. Also, in [85], seman-
tic-based signatures have been generated based on 
the Annotated Control Flow Graph (ACFG) to detect 
suspicious behaviour in app’s native code. The ana-
lysed applications have been broken up into a set of 
ACFGs to construct its signature, and if the constructed 
signature matches a malware pattern within a given 
threshold, the app is labelled as malware. In [106], a 
method that takes into account both app descriptions’ 
information (which are indicative of apps’ topics) and 
sensitive data flow information has been proposed to 
characterize malicious apps. The proposed method 
based on mining of the topic-specific sensitive data 
flow signatures to improve malware characterization. 
The topic-specific signatures have been generated by 
computing the information gain ratio for each data 
flow pattern that seen in the apps from a specific cat-
egory (specific-topic).

Furthermore, in [82], a generalized signature-based 
method has been proposed to overcome the lack of 
robustness of the traditional signature-based approach. 
It has been proposed to create malware families-based 
signatures instead of malicious app-based signatures. The 
detection was made by estimating the similarity between 
the target app’s DEX file and each family signature. It has 
been stated that the results of the proposed approach 
shown improvement in detection accuracy compared with 
the previous static approaches. It should be noted that the 
signature-based approach suffering from weaknesses such 

Fig. 5   The proposed used features taxonomy
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as the ability to detect only known malware types and fail-
ing to detect unknown malware, polymorphic malware or 
zero-day attacks.

B.	 Machine learning based approach Because of the pre-
viously mentioned limitations of the signature-based 
detection method, there is an urgent need for new 
detection methods that can handle the huge number 
of polymorphic malware and the new malware devel-
opment technologies. Therefore, machine learning 
and data mining algorithms have been introduced 
into the malicious applications detection domain and 
these algorithms have proved its efficiency. The bulk 
of works that have been studied in this paper have 
used supervised learning algorithms and a small part 
of works has used some unsupervised clustering algo-
rithms such as the k-means algorithm. Due to limita-
tions in space we will briefly list some of the algorithms 
that have been used frequently in most of the studied 
works.

1.	 Classification algorithms This type of algorithms 
is based on supervised learning, where a part 
of the dataset is used for training and the other 
part for testing, and the training dataset must be 
a labelled data. Since the malware classification 
problem is a binary classification problem, one 
of the most widely used methods is SVM (Sup-
port Vector Machine). SVM is a non-probabilistic 
supervised binary classification algorithm relies 
on finding such hyperplane that would separate 
the data classes in the best way. In other words, it 
aims to find a hyperplane that separate data with 
maximum margins. The second heavily used clas-
sification algorithm is Naive Bayes, which based 
on Bayes theorem and can be used in both binary 
and multi-class problems. This classifier evaluates 
the probability of each feature independently, 
regardless of any correlations, and makes its pre-
diction based on the Bayes Theorem [107]. Also, 
Decision Tree one of the commonly used classifica-
tion algorithm, this algorithm depends on building 
a decision tree based on the data entropy. Each 
node of the tree selects a feature and splits its 
sets of samples into subsets until the classes can 
be inferred [78]. Also, Random Forests (RF) algo-
rithm is one of the most popular used classification 
algorithms. RF consists of collections of decision 
trees and aims to produce prediction accuracy 
better than what the normal decision tree can do. 
In some other works Bayesian network has been 
used, Bayesian network is a probabilistic graphi-

cal model that represents a set of variables and 
its dependencies using a directed acyclic graph 
(DAG). Furthermore, the logistic regression was 
used frequently in the studied works, which is a 
statistical regression model uses a dependent vari-
able to estimate the probability of binary response 
based on multiple features [78]. Moreover, Adap-
tive Boosting (AdaBoost) algorithm also was used 
in some previous works. AdaBoost is an ensemble 
algorithm that can be used to enhance the per-
formance of any machine learning algorithm and 
preferred to be used with weak learners. In other 
words, the Boosting refers to an ensemble method 
that creates a strong classifier from a number of 
weak classifiers. Also, the K-Nearest Neighbours 
algorithm has been used in multiple works, this 
algorithm depends on the majority of the closest 
neighbours to predict the sample’s class. A vari-
ety of the above-discussed algorithms have been 
used in the works that covered in this paper, we 
will list some of these works in the following para-
graphs. In [75], a generic data mining approach 
has been followed to create a classifier that can 
detect malicious behaviour in Android applica-
tions. A large set of malware and benign apps has 
been analysed and the API list for each class has 
been constructed. Then, the frequency analysis 
has been adopted to distinct the API set which 
is more used in malware apps than benign ones. 
After that, Decision Tree, K-Nearest Neighbours, 
and linear SVM have been adapted to differenti-
ate between malware and benign ware. In [69], 
multiple static features have been extracted and 
a linear support vector machines (SVM) classifier 
has been adopted to distinguish between benign 
and malicious behaviour. In [108], static analysis 
tool called Manilyzer has been proposed. Mani-
lyzer is based on the manifest file’s information 
and machine learning techniques. Naive Bayes, 
Support Vector Machine (SVM), K-Nearest Neigh-
bours (KNN), and C4.5 Decision Tree algorithms 
have been adopted to distinguish between the 
malicious and benign apps. In [109], an ensemble 
classifiers-based method is presented to detect 
Android malware. The proposed method is based 
on extracting multiple features from a data set and 
training the ensemble classifiers using a collabora-
tive approach. State of the art ensemble schemes 
such as AdaBoost and Bagging have been adopted 
and the collaborative approach has been used for 
boosting some weak classifiers like J48 (Weka’s 
implementation of the Decision tree) and Ran-
dom trees. The proposed method’s performance 
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has been compared with the performance of 
some state-of-art learning techniques. In [110], a 
machine learning-based static analysis framework 
called ANASTASIA has been proposed. To this end, 
an Androguard-based tool called uniPDroid has 
been implemented to extract as many informative 
features as possible from Android applications. 
After that, several machine learning techniques 
such as AdaBoost, Random Forest, SVM, K-NN, 
Logistic Regression, Naive Bayes, Decision Tree 
Classifiers and Deep Learning have been adopted 
to classify an Android application as malware or 
benign. In [111], an Android malware detection 
method that combines 2-level machine learning 
with static analysis techniques has been proposed 
to optimize malware detection. In the first level, 
the Support Vector Machine has been used, while 
three different algorithms have been adopted 
in the second level (i.e. SVM-NB (SVM and Naive 
Bayes), 2-level Linear-SVM and 2-level RBF-SVM). 
In [112], an Android malware detection method 
that use the control flow graph’s community struc-
ture analysis has been introduced. The proposed 
method adopts three features extracted from com-
munity structures to be used in training and test-
ing some machine learning classifiers namely Deci-
sion Tree, SVM, NaiveBayes, and BayesNet. Also, in 
[50], Naive Bayesian (NB), Support Vector Machine 
(SVM) and reduced error pruning tree (REPTree) 
have been used for botnets classification. Moreo-
ver, In [78], multiple classification and clustering 
algorithms such as SVM, Naive Bayes, Decision 
trees, AdaBoost and Simple K-means have been 
used to distinguish between android benign and 
malware apps. Furthermore, a variety of machine 
learning algorithms including SVM, Random Forest 
(RF), and K-Nearest Neighbour (KNN) have been 
used as classifiers in [48, 77].

2.	 Clustering algorithms This type of algorithms is 
based on unsupervised learning and used when 
the data is unlabelled or only a small part of it is 
labelled. The clustering algorithms are used to 
divide data into clusters depending on the amount 
of similarity between its samples. So, the distance 
measures methods such as the Euclidean dis-
tance or Cosine distance can be used in this type 
of algorithms to measure the similarities between 
the data samples. We found that the K-means 
algorithm was used in most of studied works that 
use this type of algorithms. This algorithm aims to 
assign each dataset’s sample into one of K clus-
ters by working iteratively and re-calculating the 
clusters’ new centroids according to data loca-

tions. This algorithm was used in some works, for 
example, in [73], multiple static features have been 
extracted and the k-means algorithm has been 
used to divide applications into multiple clusters. 
Then the KNN algorithm has been adopted to clas-
sify applications as benign and malicious. Also, in 
[113], the k-means algorithm has been used as a 
first phase to cluster the extracted features into 
multiple clusters. After that, machine learning clas-
sification algorithms have been used for classifying 
the apps to multiple classes. Moreover, in [114], a 
hybrid classification method has been proposed 
to classify Android apps using k-means algorithm 
as a clustering phase followed by the J48 and ID 3 
classifiers as a classifying phase. Also, the K-means 
clustering algorithm has been used with some 
classification algorithms in [78].

	   It worth mentioned that N-fold cross-validation 
with N = 10 has been used in most of the proposed 
conventional machine learning algorithms-based 
detection methods. Moreover, the machine learn-
ing algorithms have been implemented using the 
WEKA tool or Scikit-learn Python library in most of 
the studied works.

3.	 Deep learning This model is a neural network con-
sisting of a large number of neurons distributed 
over multiple layers namely, input layer, output 
layer and multiple hidden layers. Deep learning 
techniques outperform conventional machine 
learning techniques by its ability to extract fea-
tures automatically for using in classification rather 
than extracting features by the analyser to insert 
it into the classifier in conventional techniques. 
Deep learning techniques were used in a small 
proportion of the studied works. For example, in 
[115], raw API method calls have been extracted 
from Android apps dataset. Then, a semantic vec-
tor was created for each application. Finally, the 
constructed vectors were used to train a multi-
layered neural network which has been used in 
applications classification. In [116], a dynamic 
analysis framework has been developed to detect 
the apps’ malicious behaviour. The proposed 
method is based on a deep learning architecture 
with Stacked AutoEncoders (SAEs) in order to clas-
sify android apps as malicious or benign. In [62], a 
Deep Belief Networks (DBN)-based deep learning 
model has been adopted to characterize Android 
apps. In [26], the classes.dex file which contains 
the core of the execution logic of Android app 
has been converted into RGB image and the con-
structed images are fed to a convolutional neural 
network for automatic feature extraction and clas-
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sifying the apps to malicious and benign. In [30], 
the apps’ source codes have been extracted and 
parsed to calculate and digitize the importance of 
terms in the total code. The digitized values have 
been converted into image and the constructed 
images have been fed to a convolutional neural 
network which adopted as a classifier. Also, in 
[89], a static analysis framework called DroidDee-
pLearner has been developed to characterize 
Android malware. Multiple static features have 
been extracted and a deep learning model has 
been adopted to distinguish the malware and 
benign-ware. Moreover, In [49], high-dimensional 
feature vectors have been built to increase the 
accuracy of malware detection and a multiple 
convolutional neural network (CNN) models have 
been adopted to detect Android malware. A serial 
convolutional neural network architecture (CNN-
S) was used with a non-linear activation function 
to increase sparseness and dropout technique to 
prevent overfitting. Finally, a deep autoencoder 
has been used as a pre-training method of CNN 
to reduce the training time and it was stated that 
DAE-CNN can learn more flexible patterns in a 
short time. Furthermore, a Convolutional Neural 
Network (CNN) and Recurrent Neural Networks 
(RNN) with Long Short-Term Memory (LSTM) have 
been adopted as classifiers in [117]. Figure 6 shows 
the detection methods that used in the studied 
works.

It is worth noted that, we classified the works which 
use pattern matching method such as [52, 118] under the 
signature-based works. Moreover, the ‘Combination’ sub 
section in the machine learning section indicates to the 
works which used both of supervised and unsupervised 
machine learning algorithms, such as [113, 114].

It is worth mentioning that there is a fourth phase that 
can be added to the previous three technical phases, espe-
cially in case of using the conventional machine learning 
algorithms whether supervised or unsupervised. This 
phase called feature selection phase we will discuss this 
phase in the following section.

4.1.1.4  Feature selection phase  Features selection is per-
formed to reduce the dimensions of the features data-
set by filtering the redundant or irrelevant features that 
can be led to several problems such as, misleading the 
learning algorithm, reducing generality (overfitting), and 
increasing model complexity. So, the features are filtered 
according to its representative capacity for the entire 
dataset. The features selection algorithm can be said to 
be effective if it can increase performance, minimize the 
data set dimensions and reduce the execution time. There 
are many features selection techniques used in the works 
that studied in this paper, we will explain just the feature 
ranking techniques (which the most used features selec-
tion methods in the studied works) due to the space limi-
tation.

Feature ranking algorithms In general, these algorithms 
use certain mathematical models for ranking and selecting 
the features which have the highest-ranking value. Infor-
mation Gains is one of the most famous feature ranking 
algorithms. This algorithm depends on calculating the 
entropy values of the features and selecting the high-
est gain features to be used in training the classification 
model. This algorithm is the most used algorithm in the 
studied works, such as in [48, 95, 111, 113, 114]. In [119], 
the features have been ranked using mutual information 
method to select the top 10, 15, 20 and 25 features. The 
mutual information (MI) measures the amount of informa-
tion that one random variable has about another variable. 
This definition is useful within the context of feature selec-
tion because it gives a way to quantify the relevance of 
a feature subset with respect to the output vector [120]. 
Mutual information method was used also in [121] with 
two other feature selection methods, the first one is Chi 
squared which based on ranking the features using the 
Chi square scores and choosing the top ranked features 
for training the model. The second one is One-way Analysis 
Of Variance (ANOVA) which based on ranking the features 
using the one-way ANOVA F test statistics and choosing 
the top ranked features for training model [122]. In [123], 
two different feature selection algorithms have been used, 
namely, Chi squared and Relief. Relief is a feature ranking 
method that based on weighting the features using values 
between − 1 and 1 such that more positive weights indi-
cating more predictive features [124]. Also, in [109], each 
of Chi Square, Relief (RF) and Information Gain (IG) algo-
rithms have been tested. In [83], the features have been 
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selected based on the frequency of its appearance in given 
class’s samples. In other words, if the number of feature’s 
appearance times in a given class’s samples was more than 
a specified threshold then the feature will be selected. Fig-
ure 7 illustrates the proportion of the behaviour analysing 
frameworks that used feature selection methods.

4.1.2 � Used evaluation dataset based taxonomy

The dataset that used to train and test the proposed mal-
ware detection systems is one of the most important cri-
teria for judging the systems’ strength. So, we proposed to 
classify the studied works based on the used evaluation 
dataset which generally composed of malware and benign 
dataset.

4.1.2.1  Benign dataset  Generally, the benign-ware data-
set in most of the studied works such as [33, 51, 54, 61, 
67, 71, 85–89, 125] was collected from the official Android 
app market (Google Play). In some other works, the 
benign dataset has been collected from the third-party 
markets such as in [49, 94, 126, 127]. And in some other 
works, a benign dataset that includes apps from each of 
the official and third-party markets has been used such as 
in [50, 128, 129].

4.1.2.2  Malicious dataset  We found that well-known 
malware datasets such as Malgenome [130] have been 
used in the most of studied works. The well-known data-
sets have been used in many works such as [32, 48, 52, 
89]. Also, special datasets that collected from the internet 
have been used in some works such as [33]. Furthermore, 
a combination of the well-known datasets and some mal-
ware samples that collected from the internet have been 
used in some other works, such as [48, 61]. Figure 8 shows 
the used datasets in the studied works.

4.1.3 � Challenges’ countermeasure‑based taxonomy

All the analysis methods that commonly used in previous 
works (i.e. static, dynamic and hybrid) have some chal-
lenges and weaknesses. Therefore, we have proposed to 

classify the previous works based on these challenges and 
the countermeasures that used in the studied works to 
address these challenges.

4.1.3.1  Static analysis challenges  Although the static 
analysis is a lightweight detection method that can detect 
Android malware quickly with low computation com-
plexity and fairly high performance, it is still facing some 
problems and challenges such as obfuscation techniques 
and code’s dynamic loading. The most important of these 
problems have been discussed in the following sections.

A.	 Obfuscation techniques Although these techniques are 
recommended to developers for many reasons such as 
protecting their applications from reverse engineering, 
this technique is one of the most important methods 
that used by malware developers to overcome static 
analysis methods and hiding the malicious behav-
iour of applications. In particular, the code obfusca-
tion changes the size and the contents of the APK file 
without modifying the logical behaviour of the mali-
cious app [131]. There are many techniques used to 
achieve this purpose, the most important ones will be 
discussed below:

1.	 Name obfuscation It is one of the simplest obfusca-
tion methods. In this method the package name of 
malicious application or some other expressions in 
malware’s code (such as class names or methods 
names) are changed to skip some analysis meth-
ods that use simple features or descriptive data in 
detecting the malicious apps.

2.	 Control flow obfuscation As mentioned previously, 
the control flow and data flow have been used 
extensively in the static analysis methods to track 
application execution paths or data flow paths in 
app’s methods in order to detect any suspicious 
behaviour, such as in [84, 85, 132]. The call-graph 
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of the malicious application can be manipulated 
to defeat detection methods which based on the 
program’s control-flow-related patterns. Goto-
obfuscation is one of the most popular control 
flow manipulation methods, where, the Goto 
instruction is used to make jumps within the code 
and manipulate the original sequence of instruc-
tions. Furthermore, to get a deeper obfuscation, 
junk methods can be added and called within the 
code [131, 133].

3.	 Strings encryption As mentioned previously, the 
strings (such as IP addresses, domain names, or 
premium numbers, that can be used to connect 
the malware to its C&C server or send a premium 
message from the victim’s device) that embedded 
within the source code have been used as a feature 
in many static analysis-based works. So, if the mal-
ware developer has performed string encryption, 
the plain string will never be found in the code, 
thus these analysing methods will often fail. The 
encrypted string will be decrypted only when it is 
processed during the app execution [131].

4.	 Class encryption It is an advanced obfuscation 
method, in which the entire class is encoded, 
compressed and stored in a data array. Then, a 
method is created to decrypt and load this class at 
the execution time such that obfuscated class will 
be decrypted, decompressed, and then loaded to 
memory [134]. This technique can greatly increase 
the overhead as a lot of instruction is added but it 
is one of the most effective ways to defeat static 
analysis techniques.

5.	 Reflection In this technique, the classes and meth-
ods can be accessed and inspected as well as new 
instances can be initiated, or the methods can be 
invoked at runtime without the need to its frank 
name at the compilation time. For example, the 
class invocation or class’s new instance creation 
can be achieved using literal strings for obfuscat-
ing the code and making it harder to be analysed, 
As shown in list 1:

	   List 1. Class invocation reflection’s example 
[135].

Original code: 
System.out.println("Hello World.");

Obfuscated code: 
Class c = Class.forName ("java.io.PrintStream");
Method m = c.getMethod("println",   new Class[] { 
String.class});
m.invoke(null, new Object[] { "Hello World. " });

6.	 Junk code insertion A junk code can be injected into 
the classes and methods code so that the injected 
junk code can be executed without affecting the 
execution of the application (maintains the func-
tion of the application). This code is called dead 
code or no-operation code [136]. This method is 
one of the famous obfuscation methods that used 
to manipulate the sequence of the code in order to 
defeat the code sequence-based analysing meth-
ods.

The treatment of some obfuscation techniques which 
described in the previous section has been addressed 
in a very limited number of studied works. For example, 
in [119], an extensive mixed features set has been used 
with Random Forest classifier to provide robustness and 
resilience against code obfuscation and other anti-anal-
ysis techniques. Also, in [102], an Android components-
based topological graph has been used to construct a 
new signature that aims at detecting malware variants 
produced using various obfuscation techniques. Also, in 
[103], a framework called DroidOLytics has been proposed 
to detect repackaging and code obfuscation in Android 
apps based on robust statistical features-based signatures. 
Moreover, in [104], a framework called RiskRanker that able 
to detect the usage of obfuscation and dynamic payload 
loading techniques has been proposed. Also, the proposed 
method can analyse whether a particular application has 
dangerous behaviours such as launching root exploits or 
sending background SMS messages.

B.	 Native code execution The Android system provides 
the possibility to write a part of application code as 
native libraries accessed using the JNI interface. This 
property has been exploited by malware developers 
to write the malicious part of the code using native 
libraries in order to make its analysis more difficult. 
An example of a malicious application that use this 
method is DroidDream, in this malware the malicious 
content was written using native code and placed in a 
non-standard location. Furthermore, the used native 
code can be encrypted and embedded in the app 
code, as in DroidKungFu malicious applications family 
[137]. Generally, the native code analysis is considered 
much harder than the bytecode analysis, so a few pre-
vious studies focus on the analysing of the native code. 
For example, in [138], a methodology that depends 
on statically analysing of native code’s API calls using 
binary slicing and known compiler optimization meth-
ods has been proposed to analyse the use of native 
code for calling the Android APIs. In [127], an improved 
copy of Mobil-Sandbox hybrid analysis framework 
which developed in [139] has been implemented by 
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adding machine learning techniques to the original 
framework. In the static analysis phase, the application 
has been de-compiled, and the Manifest file has been 
parsed in order to gather the permissions and intents 
that looks to be suspicious. In the dynamic analysis 
phase, the application has been executed in a sandbox 
to log all performed actions including Native API calls. 
In [140], each of the requested permissions, broadcast 
receivers, and the presence of embedded native code 
have been used as features and the random decision 
forests have been used as a classifier to detect the 
app’s malicious behaviour. In [60], a dynamic analysis 
platform has been developed for tracking information 
leakage through both the Java and native components 
based on taint analysis.

C.	 Dynamic payload The Android system allows the appli-
cations to load DEX, JAR, SO and ELF files and execute 
these files at the execution time. This property has 
exploited by malware developers to embed the mali-
cious content within an encrypted Dex, Jar or native 
code files so that it is called at the app execution time, 
decrypted and then executed. In some cases, mali-
cious content is not embedded in the application, but 
downloaded from a remote server at the execution 
time, which, making impossible to detect the malware 
using static analysis methods. The dynamic payload 
has been addressed in some previous works, for exam-
ple, in [141], a hybrid analysis framework has been 
proposed to detect the dynamically-loaded native 
code by collecting the system calls that made by the 
native code. In [142], a dynamic analysis system called 
DroidTrace that focuses on exploring the behaviour 
of dynamic payloads has been proposed. The Ptrace 
tool has been used to monitor the system calls and 
the forward execution has been used to trigger differ-
ent dynamic loading behaviours on the target process 
that running the dynamic payloads. It has been stated 
that the proposed framework can monitor all dynamic 
payloads behaviours on both java and native code 
level, can be executed on real devices for all Android 
versions, and can detect four kinds of behaviours, i.e. 
file operation, network connection, inter-process com-
munication, and privilege escalation. Also, in [139], a 
framework called DroidAnalytics that combat against 
malware which uses repackaging, code obfuscation or 
dynamic payloads has been developed.

D.	 Applications repackaging This method is one of the 
most common methods used for developing mali-
cious applications. Simply, app repackaging is based 
on decompiling one of the popular applications and 
adding the malicious content to its source code. After 
that, the application is re-compiled, signed with a new 
signature and re-published on the official or third-

party app stores. This type of techniques has been 
addressed in some of the studied works, for exam-
ple, in [32], a method for detecting the repackaging 
of applications has been proposed. The proposed 
method depends on the fact that the attacker does 
not change some original application’s data such as 
app name and app icon in order to benefit from the 
popularity of the original application. In [143], a static 
analysis approach called MIGDroid was introduced 
to detect App-Repackaging based Android malware. 
Firstly, the API calling sequences were extracted, then 
the method invocation graph was constructed. After 
that, the constructed graph was separated into sub-
graphs and the subgraph’s threat score was calcu-
lated according to the sensitive APIs that invoked in 
each of these subgraphs. In the end, the sub-graph 
that exceeding the predefined threshold was labelled 
as harmful. Also, in [144], a prototype system called 
DroidMOSS has been developed to detect repack-
aged apps in the third-party markets. A fuzzy hashing 
technique has been adopted in order to localize and 
detect possible changes in the repackaged app. The 
proposed system was tested to identify repackaged 
applications in six different third-party markets and it 
has been found that 5–13% of the applications hosted 
in the tested markets are repackaged apps.

4.1.3.2  Dynamic analysis challenges  The dynamic analy-
sis is used to avoid the weaknesses of static analysis, but 
this type of analysis faces some challenges also, the most 
important of which are:

A.	 Coverage of all execution paths It is one of the most 
important challenges facing dynamic analysis method, 
as this method needs to cover all possible execution 
paths of the application in order to fully analyse the 
app’s behaviour. Usually, any activity in the application 
contains more than one element (buttons, text box, 
radio button…etc.), and since most of the UI triggering 
tools such as Monkey Runner generate random events 
to interact with apps, so some of the execution’s paths 
can be missed. Although it is not possible to ensure 
that this problem can be completely addressed, it was 
tried to address this challenge in some of the studied 
works. For example, in [57], it has been tried to mitigate 
the effects of this problem by building Python scripts 
which triggers a series of system and user events to 
more fully cover an app’s functionality. The proposed 
tool combines some open source tools together with 
custom-built instrumentation programs. Also, in [145], 
a hybrid method was proposed to improve the auto-
matic user interface trigger by hybridizing the Android 
MonkeyRunner with DroidBot UI trigger tool.
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B.	 Anti-emulation techniques There are many ways and 
techniques that malware developers can follow to 
find out if an application is running in an analysis 
environment or normal environment. For example, a 
malicious application can detect the emulator simply 
by examining the value of certain hardware’s identi-
fiers such as the value of IMSI and IMEI (its values are 
usually zeros in the emulator). The malicious applica-
tion can also identify the analysis environment based 
on the difference in resources’ capacity (processor, 
memory…) between analysing environment and 
regular environment. This technique is based on that 
the emulators’ resources are usually more than the 
real devices’ resources (the emulators run on desktop 
computers) [146]. It is also possible to discover if the 
malicious application works in an analysing environ-
ment by observing the interaction of the user with 
the app. This method is based on the fact that the fre-
quency of events which generated by the UI triggers 
is much higher and irregular compared to that gener-
ated by the regular user. If the malware detects that 
it is executed in an analysing environment it will hide 

the malicious behaviour and performs benign tasks 
to evade the detection. It is worth noting that, some 
malicious applications conceal their malicious behav-
iour for a period of time in order to skip the analysing 
time. There are no clear solutions for this problem was 
proposed in the previous works excepting some sim-
ple procedures that have been followed in a very lim-
ited number of works to mitigate the effects of some 
of these techniques. For example, in [55, 147], some 
procedures such as adding contact information and 
changing the emulator’s IMEI number to a real IMEI 
number have been conducted to enhance the used 
sandbox emulator.

Figure 9 illustrates the works that have been attempted 
to address the challenges facing the analysis method used 
in each of which. It is worth mentioning that a specific 
challenge was considered as ‘addressed’ in a particular 
work once there was any action within the work to miti-
gate the challenge’s effects.

Furthermore, Fig. 10 shows the taxonomy of the used 
analysis methods’ drawbacks (challenges).

4.2 � Dynamic analysis environments

This category includes the works that aim at developing 
dynamic analysis environments that can be used in analys-
ing the apps’ behaviours. This type of works includes the 
works that aim at modifying the Android operating system 
to construct a new operating system that can monitor and 
analyse the applications’ behaviours. Also, it includes the 
works which aim at designing and developing an analysis 
infrastructure (Test-Bed). For example, in [58] an environ-
ment for analysing Android applications called AppsPlay-
ground has been proposed. The proposed framework 
aims to provide an automatic environment for dynamic 
analysis of applications by integrating a number of detec-
tion, exploration, and disguise techniques. The proposed 

Fig. 9   Countering the challenges of the used analysis method in 
the studied works

Fig. 10   The taxonomy of the used analysis methods’ challenges
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platform is built on a head of the standard Android emula-
tor that comes with the Android SDK. In [148], a dynamic 
analysis platform called Andlantis that can handle more 
than 3000 Android apps per hour has been proposed. The 
system is able to collect valuable app’s behaviour data 
which helps reverse-engineers and malware researchers to 
identify and understand anomalous applications’ behav-
iour. The proposed framework can run the Android operat-
ing system in a virtual environment that simulates a physi-
cal device. Also, in [99] a System called STREAM has been 
proposed to automatically train and evaluate Android 
Malware classifiers. STREAM has introduced automation 
approaches that address APK setup, user input creation, 
feature vector collection, and malware classification. It 
also provides an effective method for quickly profiling 
malware and training machine learning classifiers. Fur-
thermore, in [149], a virtual machine introspection (VMI) 
based dynamic analysis platform called CopperDroid has 
been developed to construct detailed behavioural profiles 
for Android malware. The proposed system constructs the 
malware behaviours by monitoring system calls and auto-
matically constructs the events produced by well-known 
process-OS interactions as well as intra- and inter-process 
communications. Also, it was stated that CopperDroid can 
capture actions that initiated both from Java and native 
code execution.

4.3 � Policy enforcement frameworks

It includes the works which aim to construct a set of rules 
to be enforced at apps installation or execution time. 
For example, in [150], the design and implementation 
of XManDroid (eXtended Monitoring on Android) which 
expands the Android permissions framework has been 
presented. The XManDroid performs runtime monitoring 
and analysing of communication links across applications 
in order to prevent potentially malicious links based on the 
defined policy. The proposed method aims to detect and 
prevent application-level privilege escalation attacks at 
the app’s runtime. Also, in [151] the Android OS has been 
extended by adding a flexible privacy enforcement frame-
work which is transparent to the applications. To achieve 
this goal, a part of Android framework, core libraries, and 
a number of services and managers outside the applica-
tion VM have been modified. The developed framework is 
called YAASE which is an Android security extension that 
supports fine-grained access control policies. YAASE has 
used the TaintDroid taint analysis mechanism to enforce 
security decisions on data distribution whether inside 
the device (from one application to another) or outside 
the device (via internet connections). Also, in [152], an 
extended Android platform called Saint was developed 
to address the limitations of Android security by adding 

installation-time granting policies and inter-application 
communication (IPC) policies (i.e. run-time enforcement 
policies). The android installer has been extended to 
extract the required permissions from the manifest file and 
mapping the permissions to the installation time policies’ 
database to make a decision whether the installation pro-
cess will continue or not. On the other hand, Saint’s run-
time enforcement policies cover four critical component 
interactions, i.e. starting new activities, binding compo-
nents to services, receiving broadcast Intents and access-
ing content providers. Furthermore, the run-time policy 
rules specify multiple conditions that should be verified 
for IPC proceeding.

4.4 � Code packer/unpacker tools

The packing techniques are used by the applications’ 
developers to protect their applications from tampering 
and reverse engineering, to this end, the tools that called 
packers are used. In these techniques, a combination 
of previously mentioned methods such as obfuscation, 
reflection, native code, and dynamic payload are used 
to hide the app’s source code in order to prevent code 
retrieval and re-use. Unfortunately, the developers of 
malicious applications exploit these techniques to impede 
analysis of applications or to make it more difficult. Some 
of the studied works aim to propose and test some cam-
ouflage techniques to test the robustness of anti-malware 
systems, we have been classified this type of works as code 
packers. For example, in [131], a framework called ADAM 
that can generate multiple malware samples from one 
sample using repackaging and obfuscation techniques 
was developed to evaluate the robustness of anti-virus 
systems against malware mutation. In [153], a systematic 
framework called DroidChameleon has been developed 
for testing the robustness of some commercial anti-mal-
ware against transformation and obfuscation techniques. 
Also, in [134], a collection of obfuscation techniques was 
used in order to obfuscate malware samples that used for 
testing the robustness of some anti-malware engines. In 
[154], a framework has been developed to test the resil-
ience of repackaging detection systems against obfusca-
tion techniques.

Some of other studied works aim to develop tools for 
unpacking the applications which use the code packing 
techniques and retrieving the app’s original source code, 
these works have been classified as code unpackers in this 
paper. For example, in [155], a packed DEX files recovering 
tool called PackerGrind has been proposed and developed 
based on a novel iterative method. PackerGrind can moni-
tor the packed patterns effectively for extracting Dex files 
based on its capability of conducting cross-layer profiling 
in real smartphones. The tool was tested using some real 
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packed apps and it has been stated that it is efficient in 
retrieving the original DEX files from the packed apps. 
In [156], Android code packing techniques have been 
described and classified to dex protection techniques, 
native protection techniques, memory protection tech-
niques and code release protection techniques. Also, an 
automated unpacking system called AppSpear has been 
proposed. The proposed framework uses a new approach 
based on ByteCode decryption and Dex reassembly that 
can take the place of traditional manual analytics and 
memory dump-based unpacking techniques. It has been 
stated that the proposed method supports each of Dal-
vik and ART and resists the packers’ techniques with low 
overhead.

4.5 � User interface triggering tools

As mentioned previously, the problem of interaction with 
the application and simulating the app’s normal usage is 
one of the most important challenge of the dynamic ana-
lysing methods. Since most of the used UI triggering tools 
depend on random event generation, some of the execu-
tion paths that can give important information about the 
actual behaviour of the application can be missed. So, 
the user interface trigger tools development is one of the 
most important research trends of the previous works. 
For example, in [157], AndroidRipper, a GUI ripping-based 
Android application’s automatic user interface event trig-
ger tool has been presented. The proposed method has 
been tested in term of finding real bugs and its suitability 
for testing processes that need to be carried out in a short 
amount of time. It was stated that the proposed technique 
is more effective in bug detection than the random testing 
technique implemented by MonkeyRunner tool. In [158], 
a system called Dynodroid that generates user interface 

inputs for Android applications has been presented. A new 
observe-select-run principle has been used to produce the 
sequence of such inputs efficiently. The proposed tool 
operates on unmodified app’s binary files and generates 
UI inputs and system inputs with an ability to combining 
inputs from user and machine. The performance of the 
proposed tool has been compared with the performance 
of manual tests performed by expert users and the perfor-
mance of MonkeyRunner tool. It has been stated that Dyn-
odroid can produce much shorter input sequences than 
MonkeyRunner tool. In [98], An UI-identification automatic 
trigger tool that can interact with mobile applications in 
a meaningful order and monitoring apps’ behaviours has 
been implemented. The proposed tool has been tested by 
building a decision model based on a variety of machine 
learning algorithms and the obtained results have been 
compared with the results of some other tools. In [116], 
a dynamic analysis tool named Component Traversal has 
been proposed in order to automatically execute the code 
of each given Android application as completely as pos-
sible. It has been stated that the proposed Component 
Traversal tool outperform the MonkeyRunner tool in term 
of system calls extraction.

Figure 11 shows the distribution of the studied works 
according to the proposed taxonomy.

Table 3 illustrates the studied works information in 
accordance with the proposed taxonomy.

5 � The proposed Schematic Review Model

In this work, we have proposed a schematic model in 
light of the studied works and the proposed taxonomy. 
The proposed model which we called “Schematic Review 
Model” represents a complete description of the malware 

Fig. 11   The distribution of the 
studied works according to the 
proposed taxonomy
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analysing process in a way that enables the researcher to 
take a comprehensive look to the domain without much 
effort. We believe that the existence of such models is 
very important in reviews papers in all domains to give an 
abstracted description of the most research trends in the 
domain using one model. The process of malware analys-
ing has been described in multiple phases, these phases 
were described detailly in a schematic manner, as showed 
in Fig. 12. To the best of our knowledge, it is the first time 
that this process is described in this way with these much 
of details. The most techniques and methods that used in 
the studied works have been overviewed and organized 
under multiple phases. These phases have been discussed 
in detail in the ‘Used techniques phases-based taxonomy’ 
section.

6 � Decision and future works areas

Although there are many reviews that have been con-
ducted in order to highlight the works that achieved in 
Android malware analysing domain, there is no compre-
hensive taxonomy for all research trends in this domain. 
Furthermore, none of the existing review papers contains 
a schematic model that makes it easy for the reader to 
know the methods and methodologies used in a particular 
field of research without much effort. This paper aims at 
proposing a comprehensive taxonomy and suggesting a 
detailed schematic review approach. To this end, a large 
number of works that published within a period of time 
that almost starting from the date of the emergence of the 
first malicious applications targeting the Android system 

Fig. 12   The proposed Android malware detection methodologies schematic model
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until the present time have been studied. Also, a compre-
hensive taxonomy has been suggested so that including as 
most as possible research trends in this domain. Moreover, 
a novel detailed schematic model called Schematic Review 
has been developed. It has been observed that most of 
the studied works use static analysis method. Also, it has 
been noted that most of the previously conducted works 
do not address the analysis evasions techniques such as 
Native code usage, Dynamic code loading, repackaging, 
or code encryption. In addition, we have observed that 
most of the works that looked comprehensive to some 
extent face problems such as increasing complexity and 
computational time or it is un-automated frameworks. We 
also noted that the malware-visualization based analysis 
method has been used in a very small number of the 
studied works although of its success in desktop malware 
detection domain. Moreover, almost all static works have 
been done based on the bytecode level, only in two stud-
ies, the application was analysed based on the Native code 
level, and no study has analysed the two level of code. 
Thus, the common weak point of all designed static anal-
ysis-based approaches is the analysis of the Native code. 
It has been noted that semantic features were not used 
extensively in the studied works. In addition, the features’ 
engineering and selection methods were used only in 39 
studies. Furthermore, deep learning techniques have been 
tested only in 14 studies. In terms of the used dataset, we 
noted that most of the developed frameworks have been 
evaluated using a benign dataset that downloaded from 
the official market, and the well-known malicious datasets 
like Drebin, Malgenom as a malware dataset. In a small 
part of works, a mix of apps that downloaded from the 
official market and the third-party markets have been 
used as a benign dataset. And a mix of the well-known 
malicious datasets and some samples that collected from 
the internet have been used as a malicious dataset a in 
small number of works. In addition, the dynamic analysis 
drawbacks have not been addressed in most of the works 
which use this analysing method (whether dynamic or 
hybrid analysis frameworks). Also, most of the proposed 
dynamic frameworks suffer from increased overhead and 
computational complexity. Furthermore, most of the 
dynamic analysis frameworks use random-based events 
generation tools for interacting with the tested program 
(such as MonkeyRunner), so some app’s execution paths 
can be missed. Thus, there is an urgent need for deeper 
and more comprehensive analysis methods such that all 
malware developers’ camouflage technologies such as 
obfuscation, dynamic loading, native code…etc. can be 
addressed. Moreover, the proposed tools should maintain 
the performance at an acceptable level and the needed 
user intervention should be as low as possible. Therefore, 
we suggest constructing the app markets’ future security 

tools based on multi-levels analysis frameworks. In other 
words, the applications should be filtered according to 
their severity level so that a small number of applications 
reach the stages of analysis that need a great analysing 
cost. Thus, a signature-based or heuristic-based method 
can be used in the first level, to this end, a lightweight 
signatures database should be constructed, and the apps 
are matched with it. In case the application is not matched 
any signature, it will be transferred to the second level in 
which a lightweight static analysis-based method can be 
used. If the application can be judged to be benign or 
malicious with no doubt the analysis will be ended. On 
the other hand, if the app has a suspicious behaviour or 
in case that the app uses obfuscation, dynamic content 
loading techniques…etc. it will be transferred to the third 
analysing level, which we propose to be a dynamic analysis 
method. In the third level, the app will be executed in an 
analysing environment and its behaviour will be studied 
by extracting as many as possible dynamic features. If a 
decision cannot be taken the extracted static and dynamic 
features can be analysed in a hybridized manner. Moreo-
ver, it is possible to add another level to this model, so that 
if the system is unable to judge on the app’s behaviour 
clearly, the reports can be studied by the analyst manu-
ally to give a final decision. Also, the signature database 
should be updated according to the decisions that taken 
in the analysing levels. Using this method, the applications 
are filtered so that only a few applications will reach to 
the final stage. Consequently, just a few applications will 
take a lot of analysis time, thus it will significantly reduce 
the overall overhead comparing with performing hybrid 
or dynamic analysis on all applications which will be ana-
lysed. More importantly, the App Store will have a high 
level of protection.

Through the extensive study carried out in this paper, 
some points which should be focused in future works were 
identified.

6.1 � Static analysis

As noted previously, the static analysis methods face many 
challenges. Although some of the static analysis’s draw-
backs have been addressed to some extent in a number 
of previous works, there is still a need for more focus on 
finding stronger solutions that avoid previous solutions’ 
weaknesses. Therefore, it is necessary to focus on the fol-
lowing areas in the future works.

6.1.1 � Native code and bytecode analysis

The most of previous works are limited to analysis at byte-
code level and a few of studies have addressed the analysis 
at the native code level, and almost there is no framework 
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that works at both bytecode and native code. For example, 
Alam et al. [85] focus on analysing apps at the native code 
level and when needed to analyse a bytecode, it must be 
converted into native code and extracting native code-
based features. However, this system suffers from some 
weaknesses such as the inability to detect zero-day mal-
ware and it is limited to detect previously known malware. 
Therefore, it should be focused on building frameworks 
that extract features from the two code levels, in order to 
obtain a deeper analysis for the applications and closing 
the door in front of embedding the malicious code within 
the native code libraries.

6.1.2 � Tackle obfuscation techniques

As mentioned before, obfuscation techniques are one of 
the biggest static analysis techniques’ challenges, and it 
has been dealt with very limited in previous studies. Thus, 
there is an urgent need to find more robust solutions 
based on more semantic features to counter obfuscation 
techniques such as reflection, control flow obfuscation, 
Junk code insertion…etc.

6.2 � Dynamic analysis

Although the dynamic analysis is the solution used to 
address static analysis method’s drawbacks, there are 
some effective techniques used by developers of malicious 
applications to defeat this analysing method. For example, 
in 2017, a number of malicious applications that exceeded 
the protection of the android official market have been 
discovered by McAfee’s staff and has been downloaded by 
a large number of users [9]. So, we have suggested some 
trends that can be focused on it in future works.

6.2.1 � User interface triggers

The problem of covering the entire app’s code and scan-
ning all possible app’s execution paths is one of the most 
important problems of dynamic analysing methods [33], 
because of that the most of the used UI trigger tools gen-
erates random events, so the app’s source code will not be 
fully covered. Also, the malware’s developers can depend 
on the generated UI events’ frequency to discover whether 
the application is executed in an analysing environment 
in order to stop the malicious content’s execution and 
executing a fake benign code. Therefore, semantic-based 
robust tools should be developed to detect events that 
should be triggered so that all the app’s source code can 
be covered, and the user interfaces can be triggered using 
well-defined events.

6.2.2 � Counter anti‑emulator technologies

These techniques are used to detect whether the applica-
tion is being executed in an analysing environment and 
thereby hide its malicious behaviour [121, 146]. In some 
previous works such as [159], some steps have been taken 
to mitigate the effects of these techniques, but there is an 
urgent need to develop countermeasure techniques that 
can overcome these technologies and detect malicious 
applications that using it.

6.2.3 � Time complexity

one of important challenge that facing dynamic analy-
sis methods is how to reduce the time that required for 
executing the application, collecting the features and 
making the right decision. In addition to the difficulty of 
implementing this procedure in a fully automated man-
ner. Therefore, it is useful to focus on this aspect in future 
works.

Furthermore, comprehensive datasets should be used 
so that it should include a collection of benign applica-
tions from both official and third-party markets and a mix 
of well-known malicious datasets’ samples and as much as 
possible of new daily published malware samples.

7 � Conclusions

After the proliferation of malicious applications target-
ing devices which use the Android operating system, 
it became necessary to find solutions to address these 
threats. Therefore, the detection of malicious applica-
tions targeting Android becomes one of the most impor-
tant scientific research’s trends. Thus, a large number of 
frameworks have been proposed and developed from 
2009 till these days. In this paper, an extensive study that 
includes more than 200 papers published between 2009 
and 2019 has been conducted. In addition to analysing 
the studied works according to multiple criteria. Also, we 
have been proposed a robust and comprehensive tax-
onomy in the light of the studied works such that most 
of the conducted works in this domain can be classified 
under it. Also, we proposed a detailed schematic model 
called Schematic Review Model illustrating the process of 
Android malware detection. To our knowledge, this is the 
first time that this process is explained in this way with this 
amount of details. Furthermore, the features that used in 
the studied works have been discussed in detail and has 
been classified into multiple classes. Also, we examined in 
detail the most important challenges that facing the com-
monly used analysing methods. Moreover, we have made 
a comprehensive summary of all the works that covered in 
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the paper with indicating the challenges facing the used 
analysing methods that have been addressed in each of 
which. We concluded that there is a shortage in most of 
the works that have been accomplished in this field, and 
therefore some points have been suggested to be covered 
in the future works.
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