
Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

Review Paper

The Android malware detection systems between hope and reality

Khaled Bakour1  · Halil Murat Ünver1 · Razan Ghanem1

© Springer Nature Switzerland AG 2019

Abstract
The widespread use of Android-based smartphones made it an important target for malicious applications’ developers.
So, a large number of frameworks have been proposed to tackle the huge number of daily published malwares. Despite
there are many review papers that have been conducted in order to shed light on the works that achieved in Android
malware analysing domain, the number of conducted review papers do not fit with the importance of this research field
and with the volume of achieved works. Also, there is no comprehensive taxonomy for all research trends in the field of
analysing malicious applications targeting the Android system. Furthermore, none of the existing review papers con-
tains a schematic model that makes it easy for the reader to know the methods and methodologies used in a particular
field of research without much effort. This paper aims at proposing a comprehensive taxonomy and suggesting a new
schematic review approach. To this end, a review of a large number of works that achieved between 2009 and 2019 has
been conducted. The achieved study includes more than 200 papers that have different goals such as apps’ behaviour
analysis, automatic user interface triggers or packer/unpacker frameworks development. Also, a comprehensive tax-
onomy has been proposed so that most of the previous works can be classified under it. To the best of our knowledge,
the suggested taxonomy is the widest and the most comprehensive in terms of the covered research trends. Moreover,
we have proposed a detailed schematic model (called Schematic Review Model) illustrates the process of detecting the
malignant applications of an Android in the light of the studied works and the proposed taxonomy. To our knowledge,
this is the first time that the Android malware detection methods have been explained in this way with this amount of
detail. Furthermore, the studied researches have been analysed according to multiple criteria such as used analysing
method, used features, used detection method, and used dataset. Also, the features used in the studied works were
discussed in detail by dividing it into multiple classes. Moreover, the challenges facing Android’s malware analysing
methods were discussed in detail. Finally, it has been concluded that there are gaps between the size and the goal of
the conducted works and the number of malicious apps published every day, so some future works areas have been
proposed and discussed.

Keywords  Android malware · Static analysis · Dynamic analysis · Malware visualisation · Obfuscation · Malware
detection

1  Introduction

Smartphones have become one of the most important
devices that currently relied on to accomplish many impor-
tant activities in our daily lives. Therefore, to keep abreast

of the growth and rapid development of smartphone tech-
nology, many advanced applications have been developed
and presented in both of the official and third-party app
markets. Consequently, smartphones demand has been
increased dramatically over time. According to Gartner’s

Received: 19 April 2019 / Accepted: 21 August 2019 / Published online: 29 August 2019

Khaled Bakour (Halit Bakir): The author has a dual citizenship, so his name is written in two different ways.

 *  Khaled Bakour, khaledbakour@kku.edu.tr; Halil Murat Ünver, unver@kku.edu.tr; Razan Ghanem, razan@kku.edu.tr | 1Department
of Computer Engineering, Kırıkkale University, Kirikkale, Turkey.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1124-x&domain=pdf
http://orcid.org/0000-0003-3327-2822

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

2017 report about the worldwide smartphones’ sales, a
global sale of smartphones reached 366.2 million units in
the second quarter of 2017 with 6.7% increase over the
same period in 2016 [1]. Furthermore, it was stated that
Google’s Android extended its lead by capturing 86% of
the total market in 2017 with 1.1% increase over 2016 [2].

The Android OS is counted as the most popular Mobile
OS because that it is a free and open source OS. In addi-
tion, Android has facilitated downloading its applications
from each of the official and third-party app markets.
The Android official market (Google Play) was originally
launched in October 2008 under the name Android Mar-
ket, and according to the statistics portal of Statista web-
site, the number of available apps in the Google Play app
store reached to 3.3 million apps in March 2018, after sur-
passing 1 million apps in July 2013 [3]. Also, it is stated
that the fourth quarter of 2017 representing an 8.84%
growth in number of apps compared to the third quar-
ter [4]. Moreover, they (Statista researchers) said that the
number of apps that downloaded from the Google Play
app store between August 2010 and May 2016 reached
65 billion apps [5].

On the other hand, the widespread of Android and
its open-source nature have made it a major target for
malicious software developers. According to the Pulse
Secure Mobile Threat Report in 2015, nearly one million
unique malicious applications that target Android OS were
launched in 2014 with a 391% increase over 2013 [6]. And
they stated that Android is ranked as the first smartphone
OS in terms of the number of malicious programs, where
the number of malwares that targeting Android reached
97% of all mobile devices’ malware. Also, according to
Symantec’s 2016 internet security threat report [7], the
number of Android malware families added in 2015 grew
by 6% compared with the 20% growth in 2014. Moreo-
ver, it was indicated that the Android malware start to use
obfuscation techniques to bypass static analysis-based
frameworks and it can bypass the most of dynamic analy-
sis tools by checking if it is running on real phones or any
kind of emulators or sandboxes that used by security ana-
lyser. Additionally, according to the G DATA Security blog
report in 2017 [8], 750,000 malicious programs that target
Android have been discovered in the first quarter of 2017
only and in total more than 3 million new malware samples
targeting the Android operating system were discovered
in 2017. Furthermore, McAfee’s Mobile Research team has
found a new Android malware in 144 “Trojanized” applica-
tions on Google Play, this threat has been named as Gra-
bos [9]. Grabos was initially found in Android application
called “Aristotle Music audio player 2017” which claimed
to be a free audio player. McAfee Mobile Research notified
Google about Grabos in September 2017 and confirmed
that Google promptly removed the reported application.

After further research, they found another 143 applica-
tions, before they have been removed from Google Play.

Due to the importance of the Android OS and increas-
ing its security threats the Android malware detection field
has become one of the most important academic research
areas. So, a large number of frameworks has been pro-
posed and developed since 2009 until these days. In this
paper, a comprehensive review has been conducted for
more than 200 papers that published between 2009 and
the beginning 2019 in order to shed light on the security
reality of the Android operating system and the research
trends that should be focused in future works.

1.1 � Related reviews

A good number of reviews have been conducted previ-
ously to highlight the achieved works in Android secu-
rity domain. In this section, the most important of these
reviews and their weaknesses will be discussed.

In [10], Android’s security mechanisms and its issues,
as well as the malware analysis evasion techniques, have
been discussed. Also, the general malware analysing
methods, the most important used tools and some of the
previously conducted state of art frameworks have been
studied. In the end, a hybrid framework’s schematic model
has been proposed to be applied in future work. This study
does not contain any taxonomy for the previous related
works. Also, there are no discussion or taxonomy for the
features that can be used in the Android malware ana-
lysing domain. In [11], the Android OS weaknesses have
been listed, a taxonomy for the previous works has been
proposed and some of future works directions have been
discussed. The proposed taxonomy is overly detailed and
contains overlapped information in some sections. Fur-
thermore, some of research trends such as user interface
triggering tools and image-based malware detection
frameworks have not been included on the proposed tax-
onomy. Also, there is no mention to evasion techniques
that used by the malicious code developers in order to
avoid the malware detection systems. Moreover, there is
no discussion or taxonomy for the features that can be
used in each of Android malware analysis methods. In [12],
the techniques that can be used in Android malware ana-
lysing systems have been discussed. Also, the techniques
which used by the malware developers for avoiding the
detection methods have been explained. In this paper,
there is no clear taxonomy for the works that conducted
in Android malware analysing domain. In [13], a detailed
background about the Android operating system was
introduced. Also, the Android’s security mechanisms and
its threats have been discussed. In this survey, a very sim-
ple taxonomy for previously proposed frameworks has
been introduced without any mention to the features

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

that used in the different analysing methods. In [14], a
taxonomy for Android malware detection frameworks has
been proposed and a systematic analysis of more than 300
papers have been conducted. Also, some gaps in the pro-
posed approaches have been discussed and some future
works trends were proposed. Although the proposed tax-
onomy is overly detailed it is not comprehensive for all
research directions in the Android security domain such as
Policy enforcement frameworks, user interface triggering
tools and packer/unpacker tools. Furthermore, the survey
does not discuss a taxonomy for the features that can be
used on each type of analysing approaches. In [15], 100
papers have been studied in term of the used features and
features’ selection methods only, and the used features
have been classified into multiple classes. In [16], a sys-
tematic review for 124 static analysis works that published
between 2011 and 2015 has been conducted. The paper
contains detailed study for static analysis techniques and
some of its challenges, but it does not contain enough
discussion for the features that used in this type of analysis
methods and there is no clear taxonomy for the related
works. Also, in [17], more than 80 static analysis works have
been studied and a well taxonomy has been proposed for
the features that used in the studied works. Furthermore,
the challenges of static analysis method were discussed,
and a case study was conducted to test the robustness
of some anti-malware systems against some obfuscation
techniques.

It is worth mentioning that the malware visualisation-
based malware analysis research trend has not been dis-
cussed in any of the previously conducted review papers.

1.2 � Motivations and goal

Although there are many review papers have been done
in the Android security field, there is no comprehensive
review for all this research area’s aspects. Particularly,
there is no review paper that contains a comprehen-
sive taxonomy for all research directions so that it can
help the researchers to know the research trends in the
domain. Also, none of the previous reviews contains a
comprehensive schematic description showing all the
used techniques on a clear phases’ form so that any
researcher who has no experience in the field can take
a comprehensive and concise overview about it. We
believe that any review on any particular research area
(not only in the field of android security) should con-
tain a clear schematic model that serves as a guide for
researchers to understand the research problem and the
mechanisms to address it. Furthermore, there are some
important work trends in the Android malware analy-
sis domain have not been discussed in any of previous
conducted reviews. For example, the works that aim at

converting the malicious apps into images (whether
grayscale or RGB) and analysing them using image pro-
cessing techniques (a.k.a malware visualisation-based
analysis frameworks) have not been discussed in any of
previous reviews. So, we have set the following objec-
tives for this paper:

1.	 Conducting a review study that covers as many as pos-
sible of researches that have been conducted in the
Android malware analysing domain between 2009 and
the beginning of 2019.

2.	 Proposing a comprehensive taxonomy so that includes
as most as possible research trends in Android security
domain.

3.	 Proposing a detailed taxonomy for the features that
used in the malware analysis methods.

4.	 Concluding a detailed schematic description model
(in the studied works’ light) that allows a well under-
standing of the used techniques in this domain with-
out much effort.

5.	 Evaluating the covered works and studying its weak-
nesses in order to figure out the existing research gaps
and proposing some available future research areas.

The following research questions have been drawn in
the paper’s objectives light:

RQ1  What are the most important techniques and
approaches that used in the field of Android malware
detection, and what are the most important research
trends of the previous works?

RQ2  What is the most appropriate way to classify the
studied works within a comprehensive taxonomy that
includes most of the previous works in the domain?

RQ3  Is it possible to express the techniques and meth-
ods that used in Android malware detection frameworks
using a comprehensive schematic model inspired from the
studied works?

RQ4  What are the weaknesses of the studied frameworks,
the existing research gaps and the trends that should be
covered the future work?

The main contributions of this paper are:

•	 More than 200 research papers that were published in
a period extending from 2009 until the beginning of
2019 have been studied from multiple aspects.

•	 A comprehensive taxonomy for Android malware ana-
lysing works has been proposed so that it can cover
most of the research in this research field.

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

•	 The studied researches have been analysed according
to multiple criteria, such as a used analysing method,
used features, used detection method, used dataset,
etc.

•	 The process of detecting Android malware was
explained under four phases and using a novel detailed
schematic manner. To the best of our knowledge, this
is the first time that the Android malware detection
techniques have been explained in this way with this
amount of detail. We called this proposed method a
Schematic Review Model.

•	 The features that used in the studied works were dis-
cussed in detail by dividing it into multiple classes.

•	 Furthermore, the challenges that facing Android mal-
ware analysing methods were discussed in detail.

•	 Finally, some future works areas have been proposed
and discussed.

2 � Android background

Android is a free open source operating system based on
the Linux kernel developed by the Android Open Source
Project AOSP managed by Google. Google purchased
Android system from the main developers in 2005, while
the Android’s official announcement was in 2007, and the
first Android device appeared on the market in 2008.

2.1 � Android application

Generally, the Android application is written using Java
programming language and some native code can be
added to it. Then, the application is compiled to Java byte-
code which translated into Dalvik bytecode and stored
in.dex (Dalvik EXecutable) and.odex (Optimized Dalvik
EXecutable) files. In the end, the app is compiled to an APK
archive which contains the application code (.dex files),
resources, assets, and manifest file. There are four types of
components can be defined in Android app, i.e. activities,
services, broadcast receivers and content providers. The
activity is the part that provides the user interface in the
Android application. The service is a general-purpose entry
point to keep the app running in the background for all
kinds of reasons. The broadcast receiver is a well-defined
entry point allow the app to receive a specific event from
the operating system or another application. The content
provider acts as a database management system manages
shared data between apps.

2.2 � APK archive architecture

The Android APK archive contains the following files and
folders.

2.2.1 � AndroidManifest.xml

It is one of the most important files in the Android appli-
cation, and this file is the first part that read by the OS
when running any application.

2.2.2 � Classes.dex

Dex code is an optimized bytecode for Android applica-
tions that contains multiple constructs like file header,
string table, local variable list, class definition table,
method list…etc.

2.2.3 � Resources.arsc

It is a file containing the application’s resources in a
binary format.

2.2.4 � Lib/folder

This folder contains the native code libraries.

2.2.5 � Assets/folder

The assets (i.e. images, files, etc.) can be placed in this
folder and it will be accessed using AssetManager.

2.2.6 � Res/folder

The app’s resources (like icons, music, images etc.) are
placed in this directory.

2.2.7 � META‑INF/folder

It contains the application’s certificate and composed
of three essential files namely, MANIFEST.MF, *.SF, and
*.RSA.

2.3 � Android’s security mechanisms

The Android system is based on three protection mecha-
nisms namely, permission framework, sandboxing and
application signing.

2.3.1 � Permission framework

It is designed by Google as a protection mechanism for
system resources so that the program cannot access a
certain protected part of the system or another appli-
cation unless it has the right permissions. The granted
permissions are assigned to application’s sandbox and

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

it will be inherited by all application’s components. If an
application wants to use an API to access a specific sys-
tem resource, appropriate permission must be declared
in its AndroidManifest.xml file.

2.3.2 � Sandboxing

It is a technique used to isolate applications from each
other and preventing the arrival of any application to the
other applications’ resources unless it has a specific per-
mission. In other words, each Android application is exe-
cuted within its virtual machine (VM) instance so that each
of these instances is executed under a unique user ID to
isolate each application from the other apps. The applica-
tions can only access other application’s resources by using
the IPC (Inter-Process Communication) binder mechanism.
This mechanism can be bypassed by an attack called Privi-
leges’ escalation which illustrated in Fig. 1. Assuming that
we have three applications A, B and C. The application A
wants to access a component C1 in the application C, but
this component requires a permission P1. Since the appli-
cation A does not have the P1 permission, it does not have
a direct access to the C1 component. But the app A can
access app B which does not require any permissions and
it has the permission P1, thus the app A can access the
required component (i.e. C1 component) through the app
B. Thus, application A can access to C1 indirectly.

2.3.3 � Application signing

The developers should sign the applications using their
own self-keys. Therefore, this technology does not provide
a protection mechanism against malicious applications as
much as generating confidence in applications that devel-
oped by the same entity. It should be noted that the appli-
cations which signed with the same key can work within
the same SandBox.

Previously, Google had been using a framework called
Bouncer, which dynamically was analysing applications by
executing the app in an isolated environment and exam-
ining their behaviour. Google has recently introduced a
new framework called Play Protect, which is an always-on
tool that scans the applications even after its installation
by the end-user. In addition, Play Protect can scan even
the applications that are downloaded from the third-party
markets. Furthermore, it is stated that this framework can
scanning and verifying over 50 billion apps every day [18].

3 � Research methodology

In this section, we will discuss searching criteria that used
to select the studied papers and the protocol that used
to include/exclude the papers from the conducted study.

3.1 � Search criteria

We initially identified the search terms that used to search
famous academic search engines such as Google scholar,
Springer, ScienceDirect and IEEE Xplore, ACM Digital
Library, etc. We used keywords related to analysis meth-
ods such as malware analysis, static analysis, hybrid anal-
ysis, malware detection, and malware visualisation. Also,
we used some terms related to smartphone and Android
such as Android malware, mobile malware and smart-
phone attacks. Furthermore, we used general terms such
as behaviour analysis, anomaly detection, signature-based
detection and apps classification.

3.2 � Papers selection criteria

Firstly, since 2008 is considered as the actual beginning
date of the Android operating system, we excluded the
papers that were published before 2008. After that, we
excluded the papers which are not related to malware

Fig. 1   Privilege escalation
attack scenario

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

analysing domain. Then, the papers’ abstracts were
examined to exclude the papers related to personal com-
puters’ malware or other smartphone operating systems’
malware such as IOS’s malware. In the end, the following
types of works are generally included in our survey:

1.	 The papers that aim at developing a malware behav-
iour analysing frameworks using any of the malware
analysing methods (static, dynamic or hybrid analysis).

2.	 Papers that aim at developing apps’ classification
frameworks whether using signature-based, machine
learning-based, etc.

3.	 Papers that aim to develop user interface events’ gen-
erating tools (UI triggers).

4.	 The works that aim at proposing techniques for avoid-
ing malware detection tools (code packer tools).

5.	 The works that aim at proposing tools that can be used
to retrieve the original code from the obfuscated one
(code unpacking tools).

6.	 The works that aim at proposing policy enforcement
frameworks that can be applied whether at app instal-
lation or execution time.

On the other hand, we excluded the papers that are
not related to the previous six trends. We will repre-
sent some examples of excluded works in the following
paragraph.

For example, Xie et al. [19] aims at developing a mal-
ware behaviour detection framework for mobile devices
generally and since we aim to study the works that aim
at developing android’s malware analysing frameworks,
therefore this paper has been excluded. Also, Vidas et al.
[20] and Bartel et al. [21] aims in developing tools that
help the developers in specifying a minimum set of
permissions required for a specific Android app. Since
these two papers are out of our review’s scope so it was
excluded. In [22], a malware that able to retrieve the user
credentials from the apps’ memory has been developed.
This type of papers is out of our review’s scope, so it has
been excluded. We also excluded [23] which aims to
analyse the potential privacy and security risks of in-app
advertisements. Furthermore, we excluded some works
that do not have a direct android malware analysing
frameworks development goal, for example, in [24] an
assessment of the presence of malware in third-party
Android markets using well-known anti-virus engines
was presented. To this end, a dataset was collected from
nine different third-party markets in three geographical
regions (China, Europe, Russia) and multiple statistical
analyses were performed on the collected dataset. Also,
in [25], multiple studies including internet survey have
been conducted in order to test the effectiveness of the
Android permissions mechanism.

4 � Proposed taxonomy

This paper aims to propose a comprehensive taxonomy
such that include as many Android security research
trends as possible. Our taxonomy is based on the papers’
goals and the problems that are tried to solve within the
works. We will explain the proposed taxonomy in detail,
and in the same context, a taxonomy for the features that
used in the various analysing methods will be proposed.
Also, a classification for the weaknesses of the used analys-
ing methods has been presented and discussed in detail.
Figure 2 illustrates the proposed taxonomy. We will divide
the studied works into five main trends each of which’s
details will be discussed.

4.1 � Behavior analysis framewoks

This research trend covers all works that aim at proposing
frameworks for analyzing and classifying the behaviour of
malicious applications. We classified these works accord-
ing to two criteria. The first one is the used technical meth-
ods, which were divided into four main phases each of
which contains different methodologies and techniques
that have been used in the studied works. The second cri-
terion is the challenges facing the used analysing method
which have been attempted to address within the specific
studied work.

4.1.1 � Used techniques phases based taxonomy

We have divided the Android malware detection process
in the light of the studied works into four phases, namely,
pre-processing phase, features extraction phase, features
selection phase, and the detection phase. We will classify
the studied works based on the techniques used in these
phases. In the following sections, the details of each of
these phases will be discussed.

4.1.1.1  Pre‑processing phase based taxonomy  In this
phase, the dataset is prepared and processed to be in a
suitable format to extract the features that will be used
to generate patterns that describe the behaviour of the
applications. This phase is very important in the malware
detection process because it determines the nature and
strength of the features that will be extracted to construct
apps’ patterns and therefore this is reflected upon the
strength of the used classifier. In general, there are four
main methods used in this phase: visualisation-based
analysis, static analysis, dynamic analysis and hybrid
analysis. In the hybrid analysing method the application
firstly analysed statically, and appropriate static features

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

are extracted, then the app is analysed dynamically to
extract dynamic features. These four methods and some
examples of each of which will be discussed in the follow-
ing sections:

A.	 Visualisation-based analysis

Although image processing techniques are widely used
in detecting malicious software targeting desktops,
and despite these technologies have proven to be very
effective in this area, these techniques were used very
limitedly in the detection of malicious software target-
ing smartphones. However, this method has been used
in some of the studied works, for example in [26], a
framework has been proposed relies on converting the
application’s source code into an RGB image and using
deep learning techniques to predict the app’s class. To
this end, the application was decompressed and its DEX
code was extracted and represented as byte-code. After
that, the colour channels’ values (i.e. R, G, and B) were
represented by splitting the hexadecimal representa-
tion of the instructions into three sections. At the end
of this phase, the apps’ source codes were converted
to RGB images. Then the convolution neural network
has been used as a prediction model in order to pre-
dict the apps’ class. In [27], four files have been selected
from the contents of the APK archive (i.e. Classes.dex,
AndroidManifest.xml, Resources.arsc and CERT.RSA)
to be converted to grayscale images. After that, GIST

features were extracted from the constructed images
and used as an input to Random decision forests classi-
fier to classify the applications into malicious or benign.
In [28], the source code of the application has been con-
verted to grayscale images by decompressing the APK
file and extracting the bytecode. After that, the Opcode
Sequences with length 2 was extracted from the app
source code. Then, the extracted code sequences were
weighted based on its frequency in the training samples,
and the weight values were considered as pixels in the
app’s images. After that, Latent Dirichlet Allocation (LDA)
algorithm has been used to select the best sequences
and reducing the dimensions in order to reduce the
image noise and improving the detection accuracy. In
the end, the optimized pixels were stacked in a vector
and used as a signature to detect the Ransomware apps.
In [29], a method has been suggested to simplify app’s
reverse engineering depending on the conversion of
the application’s structure into an image and manipu-
lating apps’ source using image processing techniques.
The proposed method depends on app decompress-
ing, DEX code extraction, dex code sections identifying
and mapping each byte in the code into a single pixel
in the image such that the pixel colour has been used
to highlight the byte value. In [30], the static analysis
was used to extract the application’s source code and
separating the instructions according to their impor-
tance into groups which were digitized based on Sim-
hash and Djb2 hash functions. The obtained hash values

Offecial
Market

Third-party
Market Combination

hooks based Log tools based

App level OS level

Machine learningSignature basedDynamic

Detection phase

Image features

Visualisation based

Pre-processing phase

Hybrid

Features extraction phase

DynamicStaticStatic

Combination Collected from Malware websitesWell-known dataset

Benign Dataset

Challenges’ countering Used techniques phases

Repackaging Exec paths coverageObfuscationDynamic PayloadNative code

Used Dataset

Malware Dataset

Goal of the work

Dynamic analysis enviroments Policy enforcement frameworks Packer/Unpacker tools UI triggering toolsBehavior analysis framewoks

App meta data

Anti-Emulation techniques

Fig. 2   The proposed taxonomy

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

were converted into an image. Finally, the convolutional
neural network has been used to classify the applications
into benign or malicious.

B.	 Static analysis

It is the most widely used and preferred method by many
researchers, thanks for its low computational time, ease of
implementation and effectiveness to some extent. In this
method, the app source code is analysed without being
executed in an emulator or real device. To this end, firstly,
the APK archive is extracted to obtain classes, manifest
file, meta-data information and media files. In this stage,
the app’s source code format is dex bytecode which not
easy to be handled so it can be de-compiled to Java or
Smali code to make it readable and easier for processing.
Multiple tools can be used in this step, such as Apktool
[31], which an open-source reverse engineering tool
that can decompress APK archives and extract nearly the
same of original contents of the applications, including
the manifest file and all.Dex files as well as all other app’s
resource folders. As mentioned before, the DEX files can
be converted to Smali code which is a middle representa-
tion between Dex bytecode and Java, easy to be read and
effective features can be extracted easily from it. So, Smali
code representation has been used extensively in the
previous researches to extract the code-based features.
Table 1 illustrates the most important tools that have been
used in the static analysis-based researches which covered
in this study.

It should be noted that these tools are commonly
employed at app repackaging techniques to disassem-
ble, modify, re-compile the APK archive. The re-packaging
techniques are commonly used by malware developers,
such that malicious code is added to regular applications
and the repackaged malicious app is republished either in
official or third-party stores.

As it was mentioned before the static method is the
most popular analysing method, so this method is used in
a lot of studied works. We will list some studied works that
use the static analysis method and the rest of the works

will be listed in one comprehensive table. In [32], a method
for detecting apps’ repackaging has been proposed. The
proposed method depends on the fact that the attacker
does not change some original application’s data such as
app name and app icon in order to benefit from the popu-
larity of the original application. The framework consists of
two tools: the first one is a client-side tool, which extracts
the features from the application and sends them (the
extracted features) to the second tool. The second tool is
a server containing a database to be compared with the
sent features to make a decision about the application.
In [33], a static analysis-based framework has been pro-
posed, where each of used permissions, sensitive APIs,
monitoring system events and permission rate have been
used as a feature for training and testing the used classi-
fier. Then, a principal component analysis (PCA) algorithm
was adopted for pre-processing the extracted features and
an ensemble Rotation Forest RF has been used to classify
the android apps into malware or benign. A dataset con-
taining 2130 samples has been used to evaluate the pro-
posed method’s performance. Furthermore, the obtained
results were compared with the results of a Support Vector
Machine (SVM) model under the same experimental condi-
tions. In [48], several challenges that facing the malware
detection methods have been reviewed and some attacks
that the conventional machine learning classifiers can fail
to address have been discussed. Based on these consid-
erations, three types of attacks that can poison datasets
to demotivate the classifiers were presented and tested.

To address these attacks a detection system called
KUAFUDET that significantly reduces false negatives and
improves detection accuracy has been proposed. After
that, Support Vector Machine (SVM), Random Forest (RF),
and K-Nearest Neighbour (CNN) machine learning algo-
rithms have been adopted as classifiers to distinguish mali-
cious applications from benign ones. In [49], multiple static
analysis features including permissions, requested permis-
sions, filtered Intents, restricted API calls, hardware proper-
ties, code-related patterns, and suspicious API calls have
been used to train and test the proposed model. In [50], a
static analysis-based method for Android botnet detection

Table 1   The most important static analysis tools

Tool name Description

Jd_gui [34] It is a standalone graphical utility that displays.class files as a Java code
Dex2jar [35] It is used to convert dex files to jar files and vice versa
Procyon [36] It is a suite of Java metaprogramming tools focused on code generation and analysis
Ded, Dare [37] It is used to convert dex bytecode files to.class files which can be processed by existing Java tools

such as Jd_gui tool
Androguard [38] A python tool that can be used to Disassemble/Decompile/Modify the DEC/ODEX/APK files’ format
Jadx [39] It is used to convert dex bytecode to java

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

has been proposed. First, the requested permissions and
used features have been extracted from a dataset that
contains benign and bot applications to create uniq++ue
patterns that can identify botnet malicious activities. In
the end, the machine learning techniques have been
adopted to create classification models that able to clas-
sify applications as benign or bot based on the created
patterns dataset. In [51], an automated malware detec-
tion system called MalPat that use permission-related APIs
and Random Forest classifier has been proposed. To build
the proposed model the APIs have been extracted from
each app and the permission-API correlations have been
revealed to construct unique patterns that can be used
to distinguish malware from benign apps. The proposed
method has been tested using a large-scale dataset and
the obtained results have been compared with some pre-
vious approaches’ results.

C.	 Dynamic analysis

Although the static analysis method is preferred by many
researchers due to its speed, applying easiness and its low
computational time it suffers from many weaknesses and
shortcomings such as the inability to address the code
obfuscation techniques or malicious content dynamic
loading. The second method that can be used in the pre-
processing phase is dynamic analysis. In this method, the
application is executed in an isolated environment and
the normal use of the application is simulated in order to
collect as much information as possible about application
behaviour. To this end, the application and a user interface
events generating tool are installed in an emulator or a real
device to simulate the app’s normal execution and collect
its behaviour. We have divided the works that used this
method based on the techniques that used to track the
behaviour of the application into hook-based and log tools
based. We will discuss these two types in the following
paragraphs:

1.	 Log tools based

In this methodology, the application is executed in a real
device or emulator to monitor its behaviour using well-
known logging tools. For example, in [52], a cloud-based
dynamic analysis framework is proposed to detect android
malware based on monitoring the Android applications’
runtime behaviour, analysing the malicious URLs and cor-
relate them with DNS service network traffic to find the
presence of malware running at the network level. In this
work, some open source tools have been used for app
behaviour monitoring and analysing. In [53], a method
for classifying android apps into benign and malware
based on monitoring app’s network behaviours has been

proposed. The app outgoing network traffic has been
monitored by running Tcpdump on the analysing envi-
ronment. A machine learning classifier (i.e. Random For-
est Enemy Learning Algorithm) has been applied to obtain
behavioural models for each normal application category.
If a new application’s behaviour can be classified to any
normal category it will be labelled as a benign app oth-
erwise it will be labelled as a malware. In [54], a resource
consumption features (i.e. network traffic, battery con-
sumption and battery temperature) have been monitored
using some logging tools. Then, multiple machine learning
algorithms have been adopted in order to distinguish mal-
ware apps from benign ones. Several experiments have
been conducted using different combinations of these
three features and machine learning algorithms. In [55],
a dynamic analysis-based framework has been proposed
to detect android malware using machine learning tech-
niques. To this end, a tool that extracts dynamic features
automatically has been implemented and multiple experi-
ments have been made to compare between emulator-
based and phone-based malware detection. The features
have been logged and extracted from the phone using
Logcat logging tool and some scripts that written for this
purpose. The features that extracted from each of the real
phone and emulator have been used to train multiple
machine learning classifiers separately and the obtained
results were compared with each other.

2.	 Hooks based

The second used dynamic analysis methodology is known
as instrumentation-based or hook-based systems. In this
method monitoring points (hooks) are embedded within
the code to record the application activities during the
execution. These hooks can be used in monitoring the
application execution, collecting information about the
methods’ pattern, tracing the executed instructions,
retrieving the sequence of events or monitoring stored
data flow. There are two trends for implementing instru-
mentation-based systems in the previous studies namely,
app-level instrumentation and operating system-level
instrumentation:

•	 App level instrumentation:

In the first method, the application is disassembled, and
its source code is modified by adding methods that can
log its behaviour (these methods called as hooks), and
the app is reassembled. The imbedded hooks track the
app behaviour during the execution and record a log for
important behavioural information such as data flow or
taint flow. For example, in [56], an APK-level instrumen-
tation method has been used to monitor Android apps’

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

suspicious API and understanding the malicious behav-
iours of Android apps. The proposed method does not
require any OS level changes, so it is compatible with all
versions of the Android operating system. The approach
depends on APK file reverse engineering, instrument code
addition and APK repackaging. After that, the APK file
will be executed in an emulator to retrieve the potential
suspicious behaviour based on monitoring the sensitive
APIs. In [57], a hybrid system called AspectDroid that aims
to detect apps’ suspicious behaviours independent on
Android runtime and system releases has been proposed.
An instrumentation engine has been designed in order
to achieve data flow analysis, resource abuse detection
and suspicious behaviour analytics. In the static phase,
the applications have been reverse engineered, the code
that will be executed alongside the original code to per-
form custom logging and other analytical functions have
been injected and finally the app has been recompiled.
The instrumented application has been executed dynami-
cally to track and log runtime events.

•	 Operating system level instrumentation:

In the second method, the operating system is modified
by adding monitoring points so that it can log the applica-
tion behaviour during app execution. In [58], the Android
operating system’s source code has been modified to
insert hooks for API-level monitoring. Also, kernel level
modifications have been conducted to make monitor-
ing at the kernel-level. In [59], a hook-based taint analysis
framework called TaintDroid has been developed on the
top of Android system to track sensitive data flow within
installed applications. The main goal of the proposed sys-
tem is detecting and analysing sensitive information that
leaving the system. Four taint propagation level namely,

variable-level, message-level, method-level, and file-
level have been tracked in the proposed system. In [60],
DroidScope has been presented, which is a fine-grained
dynamic binary instrumentation tool for Android that
embeds two levels of hooks namely an operating system
level hooks and Java level hooks. The proposed tool is able
to demonstrate the interactions between Java and native
components of malware samples. Also, the tool provides
dynamic analysis of native instructions as well as Dalvik
byte code. Table 2 illustrates the most important tools
used in the dynamic analysis based researches that cov-
ered in this study.

D.	 Hybrid analysis

This method combines static and dynamic analysis in
order to obtain a more accurate analysis of applications.
Generally, the apps are reverse engineered to extract static
features from the source code, after that, the apps are exe-
cuted in an isolated environment, i.e. an emulator or a real
device, to extract dynamic features. Therefore, despite its
overhead and implementation complexity, this analysis
method is considered the most profound and compre-
hensive method. Although the hybrid analysis method is
relatively less commonly used in previous works, this type
of analysis has been used in a number of works among the
studied articles. For example, in [61], a hybrid Android mal-
ware analysis approach called mad4a has been proposed
in order to benefit from the advantages of both static and
dynamic analysis techniques. In the static analysis phase,
the permissions have been extracted from the applica-
tion’s Manifest file and the extracted permissions have
been mapped with the corresponding API calls in the Java
source code. In the dynamic analysis phase, the malware

Table 2   The most important used dynamic analysis tools

Tool name Description

MonkeyRunner [40] Application UI trigger tool that can send random events such as touching the screen, swiping or pressing a
widget…etc.

DroidBot [41] Input generator that can send random or scripted input events to an Android app so that it can achieve higher
test coverage and generate a UI transition graph (UTG) after testing

Android Debug Bridge [42] A versatile command-line tool used to communicate with the device, installing, debugging apps or providing
access to a Unix shell to run commands on a device

Logcat [43] A command-line tool that dumps the log of system messages
Droidbox [44] It is a dynamic analysis platform that employs an integrated system containing TaintDroid with a modification

of Android’s core libraries
Robotium [45] Robotium is an Android test automation framework that has full support for native and hybrid applications.

Robotium makes it easy to write powerful and robust automatic black-box UI tests for Android applications
Strace [46] A Linux utility used to monitor interactions between processes and the Linux kernel. This tool is used to collect

logs in order to record the executed Linux kernel system calls
Tcpdump [47] It is used to capture and store all the network traffic in a Pcap file

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

and benign apps have been installed in the emulator
and 500 different UI events have been generated using
MonkeyRunner tool to simulate the app’s normal usage.
Then, the log file has been traced to monitor executed
application’s network usage (i.e. the size of downloaded
or uploaded data and the number of incoming and out-
going connections). Also, an algorithm to detect the per-
missions’ over-privilege has been proposed (permissions’
over-privilege means that the applications demand more
permissions than they actually use). In [62], a deep learn-
ing-based hybrid analysis framework called DroidDetec-
tor has been proposed to differentiate between benign
and malicious Android applications. A total of 192 binary
features were extracted using static and dynamic analy-
sis, and the extracted features were used as input to the
deep learning model. A number of experiments have been
conducted using the proposed tool to verify the ability of
the Deep Learning model to detect Android malware. The
obtained results have been compared with the results of
some conventional machine learning algorithms, namely
Naive Bayes, C4.5, Logistic Regression, SVM and Multi-
Layer Perceptron plexus. In [63], a hybrid analysis frame-
work has been proposed to detect Android malware based
on static features such as required permissions and sen-
sitive API calls as well as some dynamic features such as
network activity, file system access and interaction with
the operating system. The extracted static and dynamic
features have been used to train and test some machine
learning algorithms i.e. Support Vector Machines (SVM),
Decision Tree (C4.5), Artificial Neural Networks (MLP), Naive
Bayes (NB), K-Nearest Neighbours and Bagging predictor.
In [64], a hybrid analysis platform called Andro-Dumpsys
has been proposed to isolate malwares from benign apps
and classify the malwares into its families. The proposed
method uses dynamic analysis for extracting Odex byte-
code using RAM acquisition to obtain the fingerprint. Also,
static analysis is used to extract multiple static features
that have been used with the obtained dynamic features
in order to classify Android applications. In [65], an attack
tree was adopted to detect Android malware and a hybrid
analysis prototype called AMDetector was proposed. The
static analysis has been used to record app attacking abili-
ties and suspicious applications’ components, while in the
dynamic phase, the events have been sent to the trigger
tool based on the application components and the app’s
runtime behaviour was examined against attack capabil-
ity. In [66], a hybrid Android malware analysing framework
has been proposed. The permissions, API methods and
classes have been extracted statically from APK archive,
and system calls, event handler and network traffic have
been traced dynamically. The extracted static and dynamic
features have been used to generate behavioural patterns
for Android apps classification.

Figure 3 shows the proportion of the analysing meth-
ods that used in the pre-processing phase in the studied
works.

4.1.1.2  Features extraction phase based  After the pre-pro-
cessing phase, the dataset will be more flexible and eas-
ier to be read and handled. In features extraction phase,
appropriate features are extracted to form patterns that
will be used for classifying applications and detecting
any potential malicious behaviour. The extracted features’
type and nature are varying according to the analysis
method which performed in the pre-processing phase
(visualisation, static, dynamic or hybrid). In this work, the
features were divided into static features, dynamic fea-
tures, hybrid features and image-based features, to the
best of our knowledge, some of the suggested features’
subclasses is novel.

A.	 Static features

In general, static features depend on parsing the app’s
source code to extract important information such as
sensitive instructions, variables names, methods, classes,
packages, strings, code context and sequence, control
flow, or data flow. We will classify the static features as
follows:

1.	 Manifest based features

The manifest file is the most important file in the
Android application and considered as a controller or
a roadmap that specifies how the application will be
executed. Moreover, all components of the application
i.e. activities, services and content providers must be
declared in this file before using within the code. This
file also contains a lot of other information that describes
application behaviour such as, actions, intents, intent-
filters, package name, category…etc. Most importantly,

63%

22%

12%
3%

Static

Dynamic

Hybrid

Visualization

Fig. 3   The used analysis methods proportion

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

this file contains the permissions that required by the
application at installation time and which are assumed
to be important for the application to work correctly.
Due to the importance of this file, its contents have been
used extensively as features in the studied works. The
Manifest-based features that used in the studied works
can be classified as follows:

•	 Permissions A large number of the studied works
depend on this type of features, such as, required per-
missions which are defined using <uses-permission>.
For example, in [67], permission-based static analysis
Android malware detection system has been proposed.
The proposed system consists of three components:
the first component is a signature database that stores
behaviour fingerprints and the analysing results. The
second component is an Android client used by end
users to provide analysis requests. The third compo-
nent is a central server used to communicate with both
the signature database and the smartphone customer
and manage the entire analysis process. The logistic
regression has been used to classify a program as mal-
ware or benign, and 88% detection accuracy rate has
been gotten. Furthermore, in some works, the permis-
sions have been used with some other types of features
such as code-based features or app metadata-based
features. For example, in [68], the app’s permissions and
some other metrics have been used as features and the
K-means algorithm has been adopted to cluster 18,147
benign Android applications into business apps or
tool apps. Also, in [69], a lightweight static analysing
method has been used to extract multiple features
such as permissions, API calls and network addresses,
then the extracted features have been embedded in
a vector to create specific patterns that used in apps
classification.

•	 Intent filter It is a powerful feature that can be used
to detect suspicious behaviour of applications, as the
intent filter can describe the exact details of the inten-
tions of the application, including the actions, data,
and intent’s categories. For example, the Intent filter is
usually used by malware apps to receive events such
as BOOT_COMPLETED to launch malicious activity. This
type of features was used extensively in previous works,
for example [70] aims to study the efficiency of intents
(explicit and implicit) in Android malware detection.
To this end, a static analysis tool called AndroDialysis
has been presented. The proposed tool extracts the
intents (implicit and explicit), intent-filters and per-
missions from the applications, then multiple experi-
ments based on different feature combinations (i.e. just
intents, just permissions and intents-permissions) were
performed. It was concluded that the android’s intents

are more effective than android’s permissions in mal-
ware detection.

•	 Hardware requirements The app’s hardware access
requests (which are translated by requesting specific
permission in the Manifest file) have been used as a
feature to detect malicious behaviour of the applica-
tions in some works, like [69, 71].

•	 Other manifest features In some works, some other man-
ifest file’s information has been used, such as activities,
services, package name and Intents. For example, in
[72] each of number of activities, number of services
and number of receivers were used with some other
code-based features to distinguish between benign
and malware apps.

2.	 Code-based features

This type of feature refers to all types of features that
extracted from the app’s source code whether Java or
native code. The features extracted from the source code
are very important for conducting a deeper analysis. In
the studied works, the code-based features have been
extracted from a variety of the source code’s representa-
tion including opcode, bytecode, Smali and java code. We
will classify the used code-based features as follows:

•	 Instructions and commands based features The code is
parsed to extract certain instructions that may describe
the potential suspect behaviour of the application. The
following instructions and commands-based features
have been used in the studied works:

1.	 API calls The Android OS provides a wide range of
APIs that can be used by the developers to access
operating system resources or hardware in the
device. The API calls are one of the most widely
used features in the malware detection domain.
Generally, these features are extracted by prepar-
ing a list of suspicious APIs and comparing it with
the used APIs in the application’s source code. API
calls were used in a lot of works such as in [73],
where a static analysis system called DroidMat
has been presented. The proposed framework
has used each of permissions, intents, and API
calls as features to detect Android malicious apps.
In [74], a static analysis framework called MOC-
Droid has been proposed to discriminate malware
and benign-ware. A semantic intention has been
extracted from third-party API call combinations
(Import terms) and two sub-models that keep only
relevant behaviours for malware and benign appli-
cations have been created. A candidate program

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

will be evaluated against these two sub-models to
measure whether it fits better with benign-ware
or malware. In some other works, API calls have
been used with API’s package level information
and parameters. For example, in [75] a method
that depends on API level information within the
bytecode has been proposed to convey substan-
tial semantics about the app’s behaviour. The pro-
posed method focuses on frequently used critical
API calls, API’s package level information, as well as
API’s parameters. Some other works are based on
mapping the API with the desired permissions. For
example, in [76], a tool called Stowaway that can
detect permissions over-privilege by extracting
the API calls and matching them with the required
permissions has been proposed.

2.	 Specific instructions Some specific instructions or
library calls that used frequently by malicious soft-
ware developers have been used in previous works
to detect malware. For example, DexClassLoader
is an API that can be used by attackers to load the
malicious content and execute it at the app execu-
tion time. Also, Crypto API is a library that can be
used to encrypt the strings or other contents in the
application. Each of DexClassLoader and Crypto
APIs have been used in [77]. Also, other features
such as Import terms were used in [74]. Moreo-
ver, the method calls and function arguments and
instructions were used in [78]. Furthermore, some
dangerous Linux commands such as Su, Chmod
and Exec have been used as features to reveal the
apps’ malicious behaviour in some static frame-
works like [48, 79]. Also, in [79], the apps have
been checked to detect the presence of embed-
ded Dex, Jar, So, or ELF files which can reveal the
apps’ behaviour.

•	 Strings and network addresses The most of malicious
applications connect to a command and control
(C&C) server to send data which can be collected
from the victim as well as receive commands from
the attacker. To this end, the server’s address is placed
within the code, so the source code can be parsed
to find any IP or DNS address that can be used as a
feature for identifying the program’s behaviour such
as in [69, 80]. Also, the strings in the app’s source code
give a great indication to the application behaviour,
thus, it (the strings) have been used in many previous
studies such as in [81–83].

3.	 Semantic features

We have categorized some of the features that have
semantic characteristics, or any combination of other
features displayed in a semantic way as semantic fea-
tures. In other words, the semantic features include code-
based features, manifest-based features or even program
description-based features that combined or represented
in a semantic way. The most important used semantic fea-
tures in the studied researches are:

•	 Control flow graph It is one of the most popular used
applications’ behaviours analysing method. In this
method, the application’s source code is represented
as a directed graph so that the nodes represent the
instructions or code blocks and the edges represent
the control flow between two nodes, i.e. represents
the execution path passes between the instructions.
Thus, CFG is a directed graph represents all possible
execution paths in order to analyse all the execution
scenarios of the application. In [84], the same concept
of control flow graph was used to build API calls’ graphs
and construct semantic signatures to detect unknown
malware variants. Also, in [85], the control flow graphs
have been built based on native code for constructing
semantic signatures that can be used to detect mali-
cious behaviour in both bytecode or native code.

•	 Data dependency graph DDG is a common program
analysis structure which represents inter-procedural
flows of data through a program [86]. DDG is a directed
graph such that its nodes represent the instructions in
the application, and its edges represent data depend-
ency between the application’s instructions. Data
dependency is obtained by data flow analysis, where
a node n

1
 is connected to a node n

2
 ( n

1
 → n

2
 ) if n

2
 uses

a variable defined by n
1
 . This type of features has been

used in some previous works, for example, in [87], the
data flow analysing method has been used to construct
a data dependency graph for user inputs and API calls,
and the control flow analysis was used to reveal the
Intent-based inter-app or inter-component events.

•	 Taint flow In this type of analysis, a sensitive data that
produced by an API is tracked from the source up to
the target. The API which produces the data is called
source and the API that send the data to network, file
or another target is called sink. The source-sink data
flow strings are generated to represent the spread-
ing of sensitive data in the apps. So, these strings
can be used as a pattern to identify apps’ behaviours.
This type of features has been used in some previous
works. For example, in [88], a framework for detecting
information leakage based on source-sink API track-
ing has been proposed. Also, in [89], a flow analysis-
based framework has been proposed for detecting
the potential malicious behaviour based on tracking

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

the sensitive information from the source method to
the sink method.

•	 Other semantic features In some works, a semantic
pattern was generated based on the app’s description
which crawled from the app store and the generated
pattern has been compared with the actual behaviour
of the app. For example, in [90], the app’s description
was used to expect the permissions which necessary
for app’s proper work. Then the expected permis-
sions were compared with the actual permissions that
used in the app. It should also be noted that the code
sequence can be used as a semantic feature to differ-
entiate between benign and malicious applications.
For example, in [91], the short sequences of the appli-
cation’s opcodes (i.e. opcode n-grams) was used to
construct feature vectors that used in Android apps’
classification. Moreover, the number of common per-
missions between a given application and a specific
category pattern has been used as a feature in [92].

It is worth noted that a mix of variety static features
types was used in the studied works. For example, in
some works, a mapping between API calls and requested
permissions has been used to avoid permission-over
privileged such as in [93, 94]. Moreover, in [95], the per-
missions have been used with some app metadata like
app’s price, a number of downloads, user rating, and
app description to distinguish the benign form malware
apps. Furthermore, in some works, the permissions have
been used with some code-based features such as API,
network addresses, intents…etc. such as in [69].

4.	 Application’s metadata-based features

We have classified the features that extracted from
the description of the application or any information
attached to the app as metadata features, this type of
features includes the following:

•	 App certificate’s information It includes the contents of
the META-INF folder, which contains the application’s
signature, certificate, and the key that used to sign
the app. This information can be used to compare
applications’ developer in some works. For example,
in [32], the developer’s signature has been used with
some other descriptive information to detect the
applications’ re-packaging.

•	 Play store descriptive information This type of features
includes all application-specific evaluation informa-
tion that can be extracted from the store such as
price, number of downloads, users rating, and so on.
For example, in [95], the program rating information

was used alongside some other descriptive informa-
tion for categorising the Android applications.

•	 Other descriptive features Some other descriptive fea-
tures have been used in some works. For example, APK
file’s hash value, application’s name and application’s
icon have been used in [32]. Also, the number of lines
in the manifest file, size of the APK archive and number
of files and folders within the APK archive have been in
[77].

B.	 Dynamic features

This type of feature includes all features that can be col-
lected during application execution such as system calls,
network activity, file system usage, etc. We will explain the
most important of these features in detail:

1.	 System calls It is one of the most used dynamic fea-
tures as an application needs to connect to the OS
using dedicated system calls (switch to kernel mode)
to achieve some tasks. The system calls can be tracked
and stored in a log file that can be used in analysing
the behaviour of the application. In some previous
works, the system calls sequence or system calls’ fre-
quency have been used to create patterns that reflect
the behaviour of the applications in a semantic man-
ner. For example, in [96], the sensitive APIs’ sequence
and the number of used API call have been extracted
during program execution then an improved Naive
Bayes classification model has been used in order to
classify the apps into malware or benign. In some other
works, the system service calls’ sequences were used
instead of the system calls because that the system
calls are composed of the function name which misses
parameters information and cannot reveal the exact
application behaviour. For example, in [97], a dynamic
analysis framework based on the co-occurrence
matrix of the system service calls has been proposed
to detect android malware. Firstly, service interface
call information of the running Android applications
has been extracted to obtain the system service call
sequence co-occurrence matrix. The obtained matrix
has been normalized to construct vectors which have
been used to train multiple machine learning classi-
fiers.

2.	 Network behaviour In general, all malicious applica-
tions connect to the network in order to send the col-
lected data, receive commands from its remote server
or any other reason. Therefore, the network traffic that
generated during the app’s execution gives a good
indication to the app’s behaviour, so, this feature has
been used in many previous works. For example, in

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

[53, 98], network activities and some other dynamic
features have been used to differentiate between mal-
ware and benign-ware.

3.	 Resources consumption-based features Mobile phones
are generally limited in terms of resources, such as bat-
tery, processor and memory. Therefore, the resource
consumption has been used as a feature to detect
malicious applications in some of the previous works.
Generally, this type of works is based on analysing the
difference between benign and malicious applications
in terms of resource consumption since malicious
applications generally consume more resources than
the benign ones. This can be explained in that most
of these applications (malicious apps) perform a task
in the background or access hardware resources such
as CPU, memory, Bluetooth and wireless devices [54].
Also, this type of features has been used with some
other features for training and testing many machine
learning classifiers in [99].

C.	 Hybrid features

As its name implies, this type of features includes a com-
bination of static features and dynamic features to get a
more accurate analysis and detecting any potentially mali-
cious behaviour of applications.

D.	 Image features

This type of feature includes all the features which
extracted from images whether grayscale or RGB images.
As mentioned previously, the analysing methods that
based on converting the malware source into an image
have been used in a limited number of previous works.
There are two trends followed in this type of works, the
first one, image-based features are extracted to be used in

training of the conventional machine learning algorithms
that used in apps’ classification. In the second trend, the
malware’s images are fed to deep learning models which
can extract appropriate image’s features automatically.
For example, in [27], the GIST feature was extracted from
images and used in a Random decision forests classifier
training. Also, in [100], a method that based on the visu-
alization of APK files as various image formats (Grayscale,
RGB, CMYK and HSL) has been presented. After that, the
GIST feature has been extracted from each image to create
a features dataset which used to train and test multiple
machine learning algorithms (i.e. Decision Tree (DT), Ran-
dom Forests (RF), and K-Nearest Neighbour (KNN)). In [28],
weights have been given for each pixel in the image and
the best sequence of pixels have been chosen and used
as a signature for detecting the malicious applications.
In the rest of works, the deep learning techniques have
been used, for example, the convolution neural network
has been used in each of [26, 30].

Figure 4 shows the proportion of features that used in
the studied researches. Also, Fig. 5 illustrates the proposed
taxonomy for the features that used in the studied works.

4.1.1.3  Detection phase  After the feature extraction
phase, the patterns that can be used in detecting the
apps malicious behaviour or in classifying benign apps
into multiple categories will be generated based on the
extracted features. In most of the studied works, these
patterns are represented as binary vectors, where 0 rep-
resents the case when the feature is not used and 1 rep-
resents the case when the feature is used. It is possible to
use labelled or unlabelled data according to the detection
method. In general, there are two approaches were used
in the researches that covered in this paper, namely, sig-
nature-based and machine learning based:

0
5

10
15
20
25
30
35
40
45

M
an

ife
st

-b
as

ed

C
od

e-
ba

se
d

M
et

ad
at

a-
ba

se
d

Se
m

an
tic

 fe
at

ur
es

C
om

bi
na

tio
n

A
PI

 c
al

le
s

Sy
st

em
 c

al
le

s

N
et

w
or

k
be

ha
vi

or

R
es

ou
rc

es
co

ns
um

pt
io

n

C
om

bi
na

tio
n

M
an

i+
D

yn
_b

eh
av

C
od

e+
 D

yn
_b

eh
av

M
an

i+
co

de
+

D
yn

_b
eh

av

Se
m

c+
D

yn
_b

eh
av

Static Dynamic Hybrid

N
o.

 O
f S

tu
di

ed
 W

or
ks

Fig. 4   The proportion of features that used in the studied
researches. Combination sections in the static and dynamic fea-
tures indicate to the works that use a mix of different types of static
or dynamic features. Mani+Dyn_behav: maifest based features

and dynamic features, Code+Dyn_behav: code based features and
dynamic features, Mani+code+Dyn_behav: maifest based features
and code based features and dynamic features, Semc+Dyn_behav:
semantic based features and dynamic features

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

A.	 Signature-based approach It is one of the most com-
mon traditional malware detection methods, where,
a pattern for each application or set of patterns that
describe the behaviour of a particular malware family
are generated and stored in a signature database. After
that, in order to examine the behaviour of any applica-
tion, its pattern will be extracted and compared with
the patterns that stored in the signature database. In
case of matching the app’s pattern with any malicious
signature, it will be judged that the app contains a
malicious behaviour. This method was widely used to
detect malicious applications that targeting comput-
ers, for example in [101], a hybrid method that based
on genetic algorithm and Tabu search algorithm has
been proposed to build a signature database for
detecting malware targeting computers. Moreover,
this method is used to detect Android malware, for
example, in [102], the patterns database was created
depending on the topology graph that constructed
based on APIs and classes to reflect the actual behav-
iour of the Android apps. Next, new applications were
analysed by matching their topology graph with the
signature database, so that if the examined app con-
tains a subgraph which is monomorphic to one of the
database’s signatures the used API set in every node
will be compared. If the similarity of API sets reaches
a specified threshold the app will be considered as
malicious. Also, in [103], a statistical features-based
signature approach has been proposed to detect
obfuscated and repackaged malware variants. The pro-
posed method uses statistically robust features that
constructed using similarity digest hashing scheme
(SDHash scheme) to generate a variable-length sig-
natures database. In [104], a code path-based signa-

ture database has been constructed to rank apps as
high-risk, medium-risk and low-risk. In [105], a Pro-
gram Dependence Graphs (PDG) has been used to
construct semantic code-based signatures to detect
the code similarity between apps. Also, in [85], seman-
tic-based signatures have been generated based on
the Annotated Control Flow Graph (ACFG) to detect
suspicious behaviour in app’s native code. The ana-
lysed applications have been broken up into a set of
ACFGs to construct its signature, and if the constructed
signature matches a malware pattern within a given
threshold, the app is labelled as malware. In [106], a
method that takes into account both app descriptions’
information (which are indicative of apps’ topics) and
sensitive data flow information has been proposed to
characterize malicious apps. The proposed method
based on mining of the topic-specific sensitive data
flow signatures to improve malware characterization.
The topic-specific signatures have been generated by
computing the information gain ratio for each data
flow pattern that seen in the apps from a specific cat-
egory (specific-topic).

Furthermore, in [82], a generalized signature-based
method has been proposed to overcome the lack of
robustness of the traditional signature-based approach.
It has been proposed to create malware families-based
signatures instead of malicious app-based signatures. The
detection was made by estimating the similarity between
the target app’s DEX file and each family signature. It has
been stated that the results of the proposed approach
shown improvement in detection accuracy compared with
the previous static approaches. It should be noted that the
signature-based approach suffering from weaknesses such

Fig. 5   The proposed used features taxonomy

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

as the ability to detect only known malware types and fail-
ing to detect unknown malware, polymorphic malware or
zero-day attacks.

B.	 Machine learning based approach Because of the pre-
viously mentioned limitations of the signature-based
detection method, there is an urgent need for new
detection methods that can handle the huge number
of polymorphic malware and the new malware devel-
opment technologies. Therefore, machine learning
and data mining algorithms have been introduced
into the malicious applications detection domain and
these algorithms have proved its efficiency. The bulk
of works that have been studied in this paper have
used supervised learning algorithms and a small part
of works has used some unsupervised clustering algo-
rithms such as the k-means algorithm. Due to limita-
tions in space we will briefly list some of the algorithms
that have been used frequently in most of the studied
works.

1.	 Classification algorithms This type of algorithms
is based on supervised learning, where a part
of the dataset is used for training and the other
part for testing, and the training dataset must be
a labelled data. Since the malware classification
problem is a binary classification problem, one
of the most widely used methods is SVM (Sup-
port Vector Machine). SVM is a non-probabilistic
supervised binary classification algorithm relies
on finding such hyperplane that would separate
the data classes in the best way. In other words, it
aims to find a hyperplane that separate data with
maximum margins. The second heavily used clas-
sification algorithm is Naive Bayes, which based
on Bayes theorem and can be used in both binary
and multi-class problems. This classifier evaluates
the probability of each feature independently,
regardless of any correlations, and makes its pre-
diction based on the Bayes Theorem [107]. Also,
Decision Tree one of the commonly used classifica-
tion algorithm, this algorithm depends on building
a decision tree based on the data entropy. Each
node of the tree selects a feature and splits its
sets of samples into subsets until the classes can
be inferred [78]. Also, Random Forests (RF) algo-
rithm is one of the most popular used classification
algorithms. RF consists of collections of decision
trees and aims to produce prediction accuracy
better than what the normal decision tree can do.
In some other works Bayesian network has been
used, Bayesian network is a probabilistic graphi-

cal model that represents a set of variables and
its dependencies using a directed acyclic graph
(DAG). Furthermore, the logistic regression was
used frequently in the studied works, which is a
statistical regression model uses a dependent vari-
able to estimate the probability of binary response
based on multiple features [78]. Moreover, Adap-
tive Boosting (AdaBoost) algorithm also was used
in some previous works. AdaBoost is an ensemble
algorithm that can be used to enhance the per-
formance of any machine learning algorithm and
preferred to be used with weak learners. In other
words, the Boosting refers to an ensemble method
that creates a strong classifier from a number of
weak classifiers. Also, the K-Nearest Neighbours
algorithm has been used in multiple works, this
algorithm depends on the majority of the closest
neighbours to predict the sample’s class. A vari-
ety of the above-discussed algorithms have been
used in the works that covered in this paper, we
will list some of these works in the following para-
graphs. In [75], a generic data mining approach
has been followed to create a classifier that can
detect malicious behaviour in Android applica-
tions. A large set of malware and benign apps has
been analysed and the API list for each class has
been constructed. Then, the frequency analysis
has been adopted to distinct the API set which
is more used in malware apps than benign ones.
After that, Decision Tree, K-Nearest Neighbours,
and linear SVM have been adapted to differenti-
ate between malware and benign ware. In [69],
multiple static features have been extracted and
a linear support vector machines (SVM) classifier
has been adopted to distinguish between benign
and malicious behaviour. In [108], static analysis
tool called Manilyzer has been proposed. Mani-
lyzer is based on the manifest file’s information
and machine learning techniques. Naive Bayes,
Support Vector Machine (SVM), K-Nearest Neigh-
bours (KNN), and C4.5 Decision Tree algorithms
have been adopted to distinguish between the
malicious and benign apps. In [109], an ensemble
classifiers-based method is presented to detect
Android malware. The proposed method is based
on extracting multiple features from a data set and
training the ensemble classifiers using a collabora-
tive approach. State of the art ensemble schemes
such as AdaBoost and Bagging have been adopted
and the collaborative approach has been used for
boosting some weak classifiers like J48 (Weka’s
implementation of the Decision tree) and Ran-
dom trees. The proposed method’s performance

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

has been compared with the performance of
some state-of-art learning techniques. In [110], a
machine learning-based static analysis framework
called ANASTASIA has been proposed. To this end,
an Androguard-based tool called uniPDroid has
been implemented to extract as many informative
features as possible from Android applications.
After that, several machine learning techniques
such as AdaBoost, Random Forest, SVM, K-NN,
Logistic Regression, Naive Bayes, Decision Tree
Classifiers and Deep Learning have been adopted
to classify an Android application as malware or
benign. In [111], an Android malware detection
method that combines 2-level machine learning
with static analysis techniques has been proposed
to optimize malware detection. In the first level,
the Support Vector Machine has been used, while
three different algorithms have been adopted
in the second level (i.e. SVM-NB (SVM and Naive
Bayes), 2-level Linear-SVM and 2-level RBF-SVM).
In [112], an Android malware detection method
that use the control flow graph’s community struc-
ture analysis has been introduced. The proposed
method adopts three features extracted from com-
munity structures to be used in training and test-
ing some machine learning classifiers namely Deci-
sion Tree, SVM, NaiveBayes, and BayesNet. Also, in
[50], Naive Bayesian (NB), Support Vector Machine
(SVM) and reduced error pruning tree (REPTree)
have been used for botnets classification. Moreo-
ver, In [78], multiple classification and clustering
algorithms such as SVM, Naive Bayes, Decision
trees, AdaBoost and Simple K-means have been
used to distinguish between android benign and
malware apps. Furthermore, a variety of machine
learning algorithms including SVM, Random Forest
(RF), and K-Nearest Neighbour (KNN) have been
used as classifiers in [48, 77].

2.	 Clustering algorithms This type of algorithms is
based on unsupervised learning and used when
the data is unlabelled or only a small part of it is
labelled. The clustering algorithms are used to
divide data into clusters depending on the amount
of similarity between its samples. So, the distance
measures methods such as the Euclidean dis-
tance or Cosine distance can be used in this type
of algorithms to measure the similarities between
the data samples. We found that the K-means
algorithm was used in most of studied works that
use this type of algorithms. This algorithm aims to
assign each dataset’s sample into one of K clus-
ters by working iteratively and re-calculating the
clusters’ new centroids according to data loca-

tions. This algorithm was used in some works, for
example, in [73], multiple static features have been
extracted and the k-means algorithm has been
used to divide applications into multiple clusters.
Then the KNN algorithm has been adopted to clas-
sify applications as benign and malicious. Also, in
[113], the k-means algorithm has been used as a
first phase to cluster the extracted features into
multiple clusters. After that, machine learning clas-
sification algorithms have been used for classifying
the apps to multiple classes. Moreover, in [114], a
hybrid classification method has been proposed
to classify Android apps using k-means algorithm
as a clustering phase followed by the J48 and ID 3
classifiers as a classifying phase. Also, the K-means
clustering algorithm has been used with some
classification algorithms in [78].

	  It worth mentioned that N-fold cross-validation
with N = 10 has been used in most of the proposed
conventional machine learning algorithms-based
detection methods. Moreover, the machine learn-
ing algorithms have been implemented using the
WEKA tool or Scikit-learn Python library in most of
the studied works.

3.	 Deep learning This model is a neural network con-
sisting of a large number of neurons distributed
over multiple layers namely, input layer, output
layer and multiple hidden layers. Deep learning
techniques outperform conventional machine
learning techniques by its ability to extract fea-
tures automatically for using in classification rather
than extracting features by the analyser to insert
it into the classifier in conventional techniques.
Deep learning techniques were used in a small
proportion of the studied works. For example, in
[115], raw API method calls have been extracted
from Android apps dataset. Then, a semantic vec-
tor was created for each application. Finally, the
constructed vectors were used to train a multi-
layered neural network which has been used in
applications classification. In [116], a dynamic
analysis framework has been developed to detect
the apps’ malicious behaviour. The proposed
method is based on a deep learning architecture
with Stacked AutoEncoders (SAEs) in order to clas-
sify android apps as malicious or benign. In [62], a
Deep Belief Networks (DBN)-based deep learning
model has been adopted to characterize Android
apps. In [26], the classes.dex file which contains
the core of the execution logic of Android app
has been converted into RGB image and the con-
structed images are fed to a convolutional neural
network for automatic feature extraction and clas-

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

sifying the apps to malicious and benign. In [30],
the apps’ source codes have been extracted and
parsed to calculate and digitize the importance of
terms in the total code. The digitized values have
been converted into image and the constructed
images have been fed to a convolutional neural
network which adopted as a classifier. Also, in
[89], a static analysis framework called DroidDee-
pLearner has been developed to characterize
Android malware. Multiple static features have
been extracted and a deep learning model has
been adopted to distinguish the malware and
benign-ware. Moreover, In [49], high-dimensional
feature vectors have been built to increase the
accuracy of malware detection and a multiple
convolutional neural network (CNN) models have
been adopted to detect Android malware. A serial
convolutional neural network architecture (CNN-
S) was used with a non-linear activation function
to increase sparseness and dropout technique to
prevent overfitting. Finally, a deep autoencoder
has been used as a pre-training method of CNN
to reduce the training time and it was stated that
DAE-CNN can learn more flexible patterns in a
short time. Furthermore, a Convolutional Neural
Network (CNN) and Recurrent Neural Networks
(RNN) with Long Short-Term Memory (LSTM) have
been adopted as classifiers in [117]. Figure 6 shows
the detection methods that used in the studied
works.

It is worth noted that, we classified the works which
use pattern matching method such as [52, 118] under the
signature-based works. Moreover, the ‘Combination’ sub
section in the machine learning section indicates to the
works which used both of supervised and unsupervised
machine learning algorithms, such as [113, 114].

It is worth mentioning that there is a fourth phase that
can be added to the previous three technical phases, espe-
cially in case of using the conventional machine learning
algorithms whether supervised or unsupervised. This
phase called feature selection phase we will discuss this
phase in the following section.

4.1.1.4  Feature selection phase  Features selection is per-
formed to reduce the dimensions of the features data-
set by filtering the redundant or irrelevant features that
can be led to several problems such as, misleading the
learning algorithm, reducing generality (overfitting), and
increasing model complexity. So, the features are filtered
according to its representative capacity for the entire
dataset. The features selection algorithm can be said to
be effective if it can increase performance, minimize the
data set dimensions and reduce the execution time. There
are many features selection techniques used in the works
that studied in this paper, we will explain just the feature
ranking techniques (which the most used features selec-
tion methods in the studied works) due to the space limi-
tation.

Feature ranking algorithms In general, these algorithms
use certain mathematical models for ranking and selecting
the features which have the highest-ranking value. Infor-
mation Gains is one of the most famous feature ranking
algorithms. This algorithm depends on calculating the
entropy values of the features and selecting the high-
est gain features to be used in training the classification
model. This algorithm is the most used algorithm in the
studied works, such as in [48, 95, 111, 113, 114]. In [119],
the features have been ranked using mutual information
method to select the top 10, 15, 20 and 25 features. The
mutual information (MI) measures the amount of informa-
tion that one random variable has about another variable.
This definition is useful within the context of feature selec-
tion because it gives a way to quantify the relevance of
a feature subset with respect to the output vector [120].
Mutual information method was used also in [121] with
two other feature selection methods, the first one is Chi
squared which based on ranking the features using the
Chi square scores and choosing the top ranked features
for training the model. The second one is One-way Analysis
Of Variance (ANOVA) which based on ranking the features
using the one-way ANOVA F test statistics and choosing
the top ranked features for training model [122]. In [123],
two different feature selection algorithms have been used,
namely, Chi squared and Relief. Relief is a feature ranking
method that based on weighting the features using values
between − 1 and 1 such that more positive weights indi-
cating more predictive features [124]. Also, in [109], each
of Chi Square, Relief (RF) and Information Gain (IG) algo-
rithms have been tested. In [83], the features have been

0
10
20
30
40
50
60
70
80
90

100

sig
na

tu
re

 a
nd

pa
tt

er
n-

ba
se

d

Po
lic

y
an

d
R

ul
e

B
as

ed

Su
pe

rv
ise

d

U
nS

up
er

vi
se

d

C
om

bi
na

tio
n

D
ee

p
le

ar
ni

ng

Signature Based Machine learning

N
o.

 O
f S

tu
di

ed
 W

or
ks

Fig. 6   The proportion of used detection method in covered studies

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

selected based on the frequency of its appearance in given
class’s samples. In other words, if the number of feature’s
appearance times in a given class’s samples was more than
a specified threshold then the feature will be selected. Fig-
ure 7 illustrates the proportion of the behaviour analysing
frameworks that used feature selection methods.

4.1.2 � Used evaluation dataset based taxonomy

The dataset that used to train and test the proposed mal-
ware detection systems is one of the most important cri-
teria for judging the systems’ strength. So, we proposed to
classify the studied works based on the used evaluation
dataset which generally composed of malware and benign
dataset.

4.1.2.1  Benign dataset  Generally, the benign-ware data-
set in most of the studied works such as [33, 51, 54, 61,
67, 71, 85–89, 125] was collected from the official Android
app market (Google Play). In some other works, the
benign dataset has been collected from the third-party
markets such as in [49, 94, 126, 127]. And in some other
works, a benign dataset that includes apps from each of
the official and third-party markets has been used such as
in [50, 128, 129].

4.1.2.2  Malicious dataset  We found that well-known
malware datasets such as Malgenome [130] have been
used in the most of studied works. The well-known data-
sets have been used in many works such as [32, 48, 52,
89]. Also, special datasets that collected from the internet
have been used in some works such as [33]. Furthermore,
a combination of the well-known datasets and some mal-
ware samples that collected from the internet have been
used in some other works, such as [48, 61]. Figure 8 shows
the used datasets in the studied works.

4.1.3 � Challenges’ countermeasure‑based taxonomy

All the analysis methods that commonly used in previous
works (i.e. static, dynamic and hybrid) have some chal-
lenges and weaknesses. Therefore, we have proposed to

classify the previous works based on these challenges and
the countermeasures that used in the studied works to
address these challenges.

4.1.3.1  Static analysis challenges  Although the static
analysis is a lightweight detection method that can detect
Android malware quickly with low computation com-
plexity and fairly high performance, it is still facing some
problems and challenges such as obfuscation techniques
and code’s dynamic loading. The most important of these
problems have been discussed in the following sections.

A.	 Obfuscation techniques Although these techniques are
recommended to developers for many reasons such as
protecting their applications from reverse engineering,
this technique is one of the most important methods
that used by malware developers to overcome static
analysis methods and hiding the malicious behav-
iour of applications. In particular, the code obfusca-
tion changes the size and the contents of the APK file
without modifying the logical behaviour of the mali-
cious app [131]. There are many techniques used to
achieve this purpose, the most important ones will be
discussed below:

1.	 Name obfuscation It is one of the simplest obfusca-
tion methods. In this method the package name of
malicious application or some other expressions in
malware’s code (such as class names or methods
names) are changed to skip some analysis meth-
ods that use simple features or descriptive data in
detecting the malicious apps.

2.	 Control flow obfuscation As mentioned previously,
the control flow and data flow have been used
extensively in the static analysis methods to track
application execution paths or data flow paths in
app’s methods in order to detect any suspicious
behaviour, such as in [84, 85, 132]. The call-graph

0

20

40

60

80

100

Feature selection is used Feature selection is not used

N
o.

 O
f S

tu
di

ed
 W

or
ks

Fig. 7   The proportion of works that used features selection

0
20
40
60
80

100
120

O
ff

ec
ia

l M
ar

ke
t

T
hi

rd
-p

ar
ty

M
ar

ke
t

C
om

bi
na

tio
n

W
el

l-k
no

w
n

da
ta

se
t

C
ol

le
ct

ed
 fr

om
M

al
w

ar
e

w
eb

si
te

s

C
om

bi
na

tio
n

Benign Datasets Malware Datasets

N
o.

 O
f S

tu
di

ed
 W

or
ks

Fig. 8   The proportion of used dataset in previous works

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

of the malicious application can be manipulated
to defeat detection methods which based on the
program’s control-flow-related patterns. Goto-
obfuscation is one of the most popular control
flow manipulation methods, where, the Goto
instruction is used to make jumps within the code
and manipulate the original sequence of instruc-
tions. Furthermore, to get a deeper obfuscation,
junk methods can be added and called within the
code [131, 133].

3.	 Strings encryption As mentioned previously, the
strings (such as IP addresses, domain names, or
premium numbers, that can be used to connect
the malware to its C&C server or send a premium
message from the victim’s device) that embedded
within the source code have been used as a feature
in many static analysis-based works. So, if the mal-
ware developer has performed string encryption,
the plain string will never be found in the code,
thus these analysing methods will often fail. The
encrypted string will be decrypted only when it is
processed during the app execution [131].

4.	 Class encryption It is an advanced obfuscation
method, in which the entire class is encoded,
compressed and stored in a data array. Then, a
method is created to decrypt and load this class at
the execution time such that obfuscated class will
be decrypted, decompressed, and then loaded to
memory [134]. This technique can greatly increase
the overhead as a lot of instruction is added but it
is one of the most effective ways to defeat static
analysis techniques.

5.	 Reflection In this technique, the classes and meth-
ods can be accessed and inspected as well as new
instances can be initiated, or the methods can be
invoked at runtime without the need to its frank
name at the compilation time. For example, the
class invocation or class’s new instance creation
can be achieved using literal strings for obfuscat-
ing the code and making it harder to be analysed,
As shown in list 1:

	  List 1. Class invocation reflection’s example
[135].

Original code:
System.out.println("Hello World.");

Obfuscated code:
Class c = Class.forName ("java.io.PrintStream");
Method m = c.getMethod("println", new Class[] {
String.class});
m.invoke(null, new Object[] { "Hello World. " });

6.	 Junk code insertion A junk code can be injected into
the classes and methods code so that the injected
junk code can be executed without affecting the
execution of the application (maintains the func-
tion of the application). This code is called dead
code or no-operation code [136]. This method is
one of the famous obfuscation methods that used
to manipulate the sequence of the code in order to
defeat the code sequence-based analysing meth-
ods.

The treatment of some obfuscation techniques which
described in the previous section has been addressed
in a very limited number of studied works. For example,
in [119], an extensive mixed features set has been used
with Random Forest classifier to provide robustness and
resilience against code obfuscation and other anti-anal-
ysis techniques. Also, in [102], an Android components-
based topological graph has been used to construct a
new signature that aims at detecting malware variants
produced using various obfuscation techniques. Also, in
[103], a framework called DroidOLytics has been proposed
to detect repackaging and code obfuscation in Android
apps based on robust statistical features-based signatures.
Moreover, in [104], a framework called RiskRanker that able
to detect the usage of obfuscation and dynamic payload
loading techniques has been proposed. Also, the proposed
method can analyse whether a particular application has
dangerous behaviours such as launching root exploits or
sending background SMS messages.

B.	 Native code execution The Android system provides
the possibility to write a part of application code as
native libraries accessed using the JNI interface. This
property has been exploited by malware developers
to write the malicious part of the code using native
libraries in order to make its analysis more difficult.
An example of a malicious application that use this
method is DroidDream, in this malware the malicious
content was written using native code and placed in a
non-standard location. Furthermore, the used native
code can be encrypted and embedded in the app
code, as in DroidKungFu malicious applications family
[137]. Generally, the native code analysis is considered
much harder than the bytecode analysis, so a few pre-
vious studies focus on the analysing of the native code.
For example, in [138], a methodology that depends
on statically analysing of native code’s API calls using
binary slicing and known compiler optimization meth-
ods has been proposed to analyse the use of native
code for calling the Android APIs. In [127], an improved
copy of Mobil-Sandbox hybrid analysis framework
which developed in [139] has been implemented by

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

adding machine learning techniques to the original
framework. In the static analysis phase, the application
has been de-compiled, and the Manifest file has been
parsed in order to gather the permissions and intents
that looks to be suspicious. In the dynamic analysis
phase, the application has been executed in a sandbox
to log all performed actions including Native API calls.
In [140], each of the requested permissions, broadcast
receivers, and the presence of embedded native code
have been used as features and the random decision
forests have been used as a classifier to detect the
app’s malicious behaviour. In [60], a dynamic analysis
platform has been developed for tracking information
leakage through both the Java and native components
based on taint analysis.

C.	 Dynamic payload The Android system allows the appli-
cations to load DEX, JAR, SO and ELF files and execute
these files at the execution time. This property has
exploited by malware developers to embed the mali-
cious content within an encrypted Dex, Jar or native
code files so that it is called at the app execution time,
decrypted and then executed. In some cases, mali-
cious content is not embedded in the application, but
downloaded from a remote server at the execution
time, which, making impossible to detect the malware
using static analysis methods. The dynamic payload
has been addressed in some previous works, for exam-
ple, in [141], a hybrid analysis framework has been
proposed to detect the dynamically-loaded native
code by collecting the system calls that made by the
native code. In [142], a dynamic analysis system called
DroidTrace that focuses on exploring the behaviour
of dynamic payloads has been proposed. The Ptrace
tool has been used to monitor the system calls and
the forward execution has been used to trigger differ-
ent dynamic loading behaviours on the target process
that running the dynamic payloads. It has been stated
that the proposed framework can monitor all dynamic
payloads behaviours on both java and native code
level, can be executed on real devices for all Android
versions, and can detect four kinds of behaviours, i.e.
file operation, network connection, inter-process com-
munication, and privilege escalation. Also, in [139], a
framework called DroidAnalytics that combat against
malware which uses repackaging, code obfuscation or
dynamic payloads has been developed.

D.	 Applications repackaging This method is one of the
most common methods used for developing mali-
cious applications. Simply, app repackaging is based
on decompiling one of the popular applications and
adding the malicious content to its source code. After
that, the application is re-compiled, signed with a new
signature and re-published on the official or third-

party app stores. This type of techniques has been
addressed in some of the studied works, for exam-
ple, in [32], a method for detecting the repackaging
of applications has been proposed. The proposed
method depends on the fact that the attacker does
not change some original application’s data such as
app name and app icon in order to benefit from the
popularity of the original application. In [143], a static
analysis approach called MIGDroid was introduced
to detect App-Repackaging based Android malware.
Firstly, the API calling sequences were extracted, then
the method invocation graph was constructed. After
that, the constructed graph was separated into sub-
graphs and the subgraph’s threat score was calcu-
lated according to the sensitive APIs that invoked in
each of these subgraphs. In the end, the sub-graph
that exceeding the predefined threshold was labelled
as harmful. Also, in [144], a prototype system called
DroidMOSS has been developed to detect repack-
aged apps in the third-party markets. A fuzzy hashing
technique has been adopted in order to localize and
detect possible changes in the repackaged app. The
proposed system was tested to identify repackaged
applications in six different third-party markets and it
has been found that 5–13% of the applications hosted
in the tested markets are repackaged apps.

4.1.3.2  Dynamic analysis challenges  The dynamic analy-
sis is used to avoid the weaknesses of static analysis, but
this type of analysis faces some challenges also, the most
important of which are:

A.	 Coverage of all execution paths It is one of the most
important challenges facing dynamic analysis method,
as this method needs to cover all possible execution
paths of the application in order to fully analyse the
app’s behaviour. Usually, any activity in the application
contains more than one element (buttons, text box,
radio button…etc.), and since most of the UI triggering
tools such as Monkey Runner generate random events
to interact with apps, so some of the execution’s paths
can be missed. Although it is not possible to ensure
that this problem can be completely addressed, it was
tried to address this challenge in some of the studied
works. For example, in [57], it has been tried to mitigate
the effects of this problem by building Python scripts
which triggers a series of system and user events to
more fully cover an app’s functionality. The proposed
tool combines some open source tools together with
custom-built instrumentation programs. Also, in [145],
a hybrid method was proposed to improve the auto-
matic user interface trigger by hybridizing the Android
MonkeyRunner with DroidBot UI trigger tool.

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

B.	 Anti-emulation techniques There are many ways and
techniques that malware developers can follow to
find out if an application is running in an analysis
environment or normal environment. For example, a
malicious application can detect the emulator simply
by examining the value of certain hardware’s identi-
fiers such as the value of IMSI and IMEI (its values are
usually zeros in the emulator). The malicious applica-
tion can also identify the analysis environment based
on the difference in resources’ capacity (processor,
memory…) between analysing environment and
regular environment. This technique is based on that
the emulators’ resources are usually more than the
real devices’ resources (the emulators run on desktop
computers) [146]. It is also possible to discover if the
malicious application works in an analysing environ-
ment by observing the interaction of the user with
the app. This method is based on the fact that the fre-
quency of events which generated by the UI triggers
is much higher and irregular compared to that gener-
ated by the regular user. If the malware detects that
it is executed in an analysing environment it will hide

the malicious behaviour and performs benign tasks
to evade the detection. It is worth noting that, some
malicious applications conceal their malicious behav-
iour for a period of time in order to skip the analysing
time. There are no clear solutions for this problem was
proposed in the previous works excepting some sim-
ple procedures that have been followed in a very lim-
ited number of works to mitigate the effects of some
of these techniques. For example, in [55, 147], some
procedures such as adding contact information and
changing the emulator’s IMEI number to a real IMEI
number have been conducted to enhance the used
sandbox emulator.

Figure 9 illustrates the works that have been attempted
to address the challenges facing the analysis method used
in each of which. It is worth mentioning that a specific
challenge was considered as ‘addressed’ in a particular
work once there was any action within the work to miti-
gate the challenge’s effects.

Furthermore, Fig. 10 shows the taxonomy of the used
analysis methods’ drawbacks (challenges).

4.2 � Dynamic analysis environments

This category includes the works that aim at developing
dynamic analysis environments that can be used in analys-
ing the apps’ behaviours. This type of works includes the
works that aim at modifying the Android operating system
to construct a new operating system that can monitor and
analyse the applications’ behaviours. Also, it includes the
works which aim at designing and developing an analysis
infrastructure (Test-Bed). For example, in [58] an environ-
ment for analysing Android applications called AppsPlay-
ground has been proposed. The proposed framework
aims to provide an automatic environment for dynamic
analysis of applications by integrating a number of detec-
tion, exploration, and disguise techniques. The proposed

Fig. 9   Countering the challenges of the used analysis method in
the studied works

Fig. 10   The taxonomy of the used analysis methods’ challenges

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

platform is built on a head of the standard Android emula-
tor that comes with the Android SDK. In [148], a dynamic
analysis platform called Andlantis that can handle more
than 3000 Android apps per hour has been proposed. The
system is able to collect valuable app’s behaviour data
which helps reverse-engineers and malware researchers to
identify and understand anomalous applications’ behav-
iour. The proposed framework can run the Android operat-
ing system in a virtual environment that simulates a physi-
cal device. Also, in [99] a System called STREAM has been
proposed to automatically train and evaluate Android
Malware classifiers. STREAM has introduced automation
approaches that address APK setup, user input creation,
feature vector collection, and malware classification. It
also provides an effective method for quickly profiling
malware and training machine learning classifiers. Fur-
thermore, in [149], a virtual machine introspection (VMI)
based dynamic analysis platform called CopperDroid has
been developed to construct detailed behavioural profiles
for Android malware. The proposed system constructs the
malware behaviours by monitoring system calls and auto-
matically constructs the events produced by well-known
process-OS interactions as well as intra- and inter-process
communications. Also, it was stated that CopperDroid can
capture actions that initiated both from Java and native
code execution.

4.3 � Policy enforcement frameworks

It includes the works which aim to construct a set of rules
to be enforced at apps installation or execution time.
For example, in [150], the design and implementation
of XManDroid (eXtended Monitoring on Android) which
expands the Android permissions framework has been
presented. The XManDroid performs runtime monitoring
and analysing of communication links across applications
in order to prevent potentially malicious links based on the
defined policy. The proposed method aims to detect and
prevent application-level privilege escalation attacks at
the app’s runtime. Also, in [151] the Android OS has been
extended by adding a flexible privacy enforcement frame-
work which is transparent to the applications. To achieve
this goal, a part of Android framework, core libraries, and
a number of services and managers outside the applica-
tion VM have been modified. The developed framework is
called YAASE which is an Android security extension that
supports fine-grained access control policies. YAASE has
used the TaintDroid taint analysis mechanism to enforce
security decisions on data distribution whether inside
the device (from one application to another) or outside
the device (via internet connections). Also, in [152], an
extended Android platform called Saint was developed
to address the limitations of Android security by adding

installation-time granting policies and inter-application
communication (IPC) policies (i.e. run-time enforcement
policies). The android installer has been extended to
extract the required permissions from the manifest file and
mapping the permissions to the installation time policies’
database to make a decision whether the installation pro-
cess will continue or not. On the other hand, Saint’s run-
time enforcement policies cover four critical component
interactions, i.e. starting new activities, binding compo-
nents to services, receiving broadcast Intents and access-
ing content providers. Furthermore, the run-time policy
rules specify multiple conditions that should be verified
for IPC proceeding.

4.4 � Code packer/unpacker tools

The packing techniques are used by the applications’
developers to protect their applications from tampering
and reverse engineering, to this end, the tools that called
packers are used. In these techniques, a combination
of previously mentioned methods such as obfuscation,
reflection, native code, and dynamic payload are used
to hide the app’s source code in order to prevent code
retrieval and re-use. Unfortunately, the developers of
malicious applications exploit these techniques to impede
analysis of applications or to make it more difficult. Some
of the studied works aim to propose and test some cam-
ouflage techniques to test the robustness of anti-malware
systems, we have been classified this type of works as code
packers. For example, in [131], a framework called ADAM
that can generate multiple malware samples from one
sample using repackaging and obfuscation techniques
was developed to evaluate the robustness of anti-virus
systems against malware mutation. In [153], a systematic
framework called DroidChameleon has been developed
for testing the robustness of some commercial anti-mal-
ware against transformation and obfuscation techniques.
Also, in [134], a collection of obfuscation techniques was
used in order to obfuscate malware samples that used for
testing the robustness of some anti-malware engines. In
[154], a framework has been developed to test the resil-
ience of repackaging detection systems against obfusca-
tion techniques.

Some of other studied works aim to develop tools for
unpacking the applications which use the code packing
techniques and retrieving the app’s original source code,
these works have been classified as code unpackers in this
paper. For example, in [155], a packed DEX files recovering
tool called PackerGrind has been proposed and developed
based on a novel iterative method. PackerGrind can moni-
tor the packed patterns effectively for extracting Dex files
based on its capability of conducting cross-layer profiling
in real smartphones. The tool was tested using some real

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

packed apps and it has been stated that it is efficient in
retrieving the original DEX files from the packed apps.
In [156], Android code packing techniques have been
described and classified to dex protection techniques,
native protection techniques, memory protection tech-
niques and code release protection techniques. Also, an
automated unpacking system called AppSpear has been
proposed. The proposed framework uses a new approach
based on ByteCode decryption and Dex reassembly that
can take the place of traditional manual analytics and
memory dump-based unpacking techniques. It has been
stated that the proposed method supports each of Dal-
vik and ART and resists the packers’ techniques with low
overhead.

4.5 � User interface triggering tools

As mentioned previously, the problem of interaction with
the application and simulating the app’s normal usage is
one of the most important challenge of the dynamic ana-
lysing methods. Since most of the used UI triggering tools
depend on random event generation, some of the execu-
tion paths that can give important information about the
actual behaviour of the application can be missed. So,
the user interface trigger tools development is one of the
most important research trends of the previous works.
For example, in [157], AndroidRipper, a GUI ripping-based
Android application’s automatic user interface event trig-
ger tool has been presented. The proposed method has
been tested in term of finding real bugs and its suitability
for testing processes that need to be carried out in a short
amount of time. It was stated that the proposed technique
is more effective in bug detection than the random testing
technique implemented by MonkeyRunner tool. In [158],
a system called Dynodroid that generates user interface

inputs for Android applications has been presented. A new
observe-select-run principle has been used to produce the
sequence of such inputs efficiently. The proposed tool
operates on unmodified app’s binary files and generates
UI inputs and system inputs with an ability to combining
inputs from user and machine. The performance of the
proposed tool has been compared with the performance
of manual tests performed by expert users and the perfor-
mance of MonkeyRunner tool. It has been stated that Dyn-
odroid can produce much shorter input sequences than
MonkeyRunner tool. In [98], An UI-identification automatic
trigger tool that can interact with mobile applications in
a meaningful order and monitoring apps’ behaviours has
been implemented. The proposed tool has been tested by
building a decision model based on a variety of machine
learning algorithms and the obtained results have been
compared with the results of some other tools. In [116],
a dynamic analysis tool named Component Traversal has
been proposed in order to automatically execute the code
of each given Android application as completely as pos-
sible. It has been stated that the proposed Component
Traversal tool outperform the MonkeyRunner tool in term
of system calls extraction.

Figure 11 shows the distribution of the studied works
according to the proposed taxonomy.

Table 3 illustrates the studied works information in
accordance with the proposed taxonomy.

5 � The proposed Schematic Review Model

In this work, we have proposed a schematic model in
light of the studied works and the proposed taxonomy.
The proposed model which we called “Schematic Review
Model” represents a complete description of the malware

Fig. 11   The distribution of the
studied works according to the
proposed taxonomy

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

Ta
bl

e 
3  

T
he

 w
or

ks
 th

at
 c

ov
er

ed
 in

 th
is

 p
ap

er
 in

 a
cc

or
da

nc
e

w
ith

 th
e

pr
op

os
ed

 ta
xo

no
m

y

#
To

ol
 n

am
e

Ye
ar

G
oa

l
M

et
ho

d
U

se
d

fe
at

ur
es

Fe
at

ur
e

se
le

ct
io

n
D

et
ec

tio
n

m
et

ho
d

Co
un

te
rin

g
st

at
ic

ch

al
le

ng
es

Co
un

-
te

rin
g

dy
na

m
ic

ch

al
-

le
ng

es

R
N

D
O

X_
P

Em

1
Sa

aS
 [1

60
]

20
19

B_
an

al
ys

is
Vi

s&
st

at
ic

ba
se

d
M

an
i_

F,
Co

d_
F,

Im
ag

e_
fe

a-
tu

re
s

TF
-ID

F
M

L
✓

✗
✗

✗

2
Sa

in
t e

t a
l.

[3
0]

20
19

B_
an

al
ys

is
Vi

s-
ba

se
d

Co
d_

F,
Im

ag
e_

Fe
at

ur
es

D
ee

p_
L

D
ee

p_
L

✗
✗

✗
✗

3
Zh

an
g

et
 a

l.
[1

61
]

20
19

B_
an

al
ys

is
St

at
ic

M
an

i_
F,

Co
d_

F
–

M
L

✗
✗

✗
✗

4
N

D
ro

id
 [1

61
]

20
19

B_
an

al
ys

is
D

yn
am

ic
Sy

st
em

 c
al

le
s,

A
PI

 c
al

ls
–

–
✗

✓
✓

✗
✗

✗
5

Cl
on

eS
po

t [
16

2]
20

19
B_

an
al

ys
is

St
at

ic
M

et
a_

F
–

Pt
rn

_M
✓

✗
✗

✗
6

D
ro

id
D

et
 [3

3]
20

18
B_

an
al

ys
is

St
at

ic
M

an
i_

F,
co

d_
F

TF
-ID

F,
Co

s_
Si

m
M

L
✗

✗
✗

✗
7

G
ur

ul
ia

n.
et

 a
l.

[3
2]

20
16

B_
an

al
ys

is
St

at
ic

M
et

a_
F

–
Si

gn
_s

im
✓

✗
✗

✗
8

KU
A

FU
D

ET
 [4

8]
20

18
B_

an
al

ys
is

St
at

ic
Co

d_
F,

Se
m

tc
_F

M
an

ua
l p

ru
ni

ng
M

L+
Si

m
✓

✗
✗

✗
9

M
ad

4a
 [6

1]
20

18
B_

an
al

ys
is

H
yb

rid
M

an
i_

F,
N

et
_b

eh
–

Pt
rn

_M
✗

✗
10

SA
FE

D
ro

id
 [7

7]
20

18
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F,

M
et

a_
F

–
M

L
✗

✗
✓

✓
11

W
an

g
et

 a
l.

[8
6]

20
18

B_
an

al
ys

is
St

at
ic

M
an

i_
F,

Se
m

tc
_F

–
Pt

rn
_M

✗
✗

✗
✗

12
W

an
g

et
 a

l.
[4

9]
20

18
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
D

ee
p_

L
✗

✗
✗

✗
13

D
ro

id
Fu

si
on

 [7
9]

20
18

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
IG

M
L

✗
✗

✓
✗

14
Ki

ru
ba

va
th

i e
t a

l.
[5

0]
20

17
B_

an
al

ys
is

St
at

ic
M

an
i_

F
IG

M
L

✗
✗

✗
✗

15
M

al
Pa

t [
51

]
20

18
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
M

L
✗

✗
✗

✗
16

Fa
lD

ro
id

 [1
63

]
20

18
B_

an
al

ys
is

St
at

ic
Se

m
tc

_F
TF

-ID
F

M
L

✗
✗

✗
✗

17
A

pp
Sp

ea
r [

15
6]

20
18

Pa
ck

er
/u

np
ac

ke
r

D
yn

am
ic

–
–

M
L

✓
✓

✓
✓

✓
✗

18
Pa

pa
do

po
ul

os
 e

t a
l.

[1
64

]
20

18
B_

an
al

ys
is

D
yn

am
ic

R_
Co

n
–

M
L

✗
✗

19
Jh

a
et

 a
l.

[1
65

]
20

18
B_

an
al

ys
is

st
at

ic
M

an
i_

F
–

–
✗

✗
✗

✗
20

SI
G

PI
D

 [1
66

]
20

18
B_

an
al

ys
is

St
at

ic
M

an
i_

F
–

M
L

✗
✗

✗
✗

21
Ch

un
le

i e
t a

l.
[1

67
]

20
18

B_
an

al
ys

is
St

at
ic

Co
d_

F
M

I
M

L
✗

✗
✗

✗
22

Ö
zk

an
 e

t a
l.

[1
68

]
20

18
B_

an
al

ys
is

St
at

ic
M

an
i_

F
–

M
L

✗
✗

✗
✗

23
Ya

ng
xu

 e
t a

l.
[1

69
]

20
18

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
M

L
✗

✗
✗

✗
24

Ch
ih

iro
 e

t a
l.

[1
70

]
20

18
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

D
ee

p_
L

D
ee

p_
L

✗
✗

✗
✗

25
Ra

nD
ro

id
 [1

71
]

20
18

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
–

M
L

✗
✓

✓
✓

26
O

N
A

M
D

 [1
72

]
20

18
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F,

Se
m

tc
_F

Si
gn

, M
L

✗
✗

✗
✗

27
Ja

em
in

 e
t a

l.
[1

73
]

20
18

B_
an

al
ys

is
St

at
ic

Co
d_

F
–

M
L

✗
✗

✗
✗

28
So

m
ar

rib
a

et
 a

l.
[5

2]
20

17
B_

an
al

ys
is

D
yn

am
ic

N
et

_B
eh

–
Pt

rn
_M

✗
✗

29
A

sp
ec

tD
ro

id
 [5

7]
20

18
B_

an
al

ys
is

H
yb

rid
Se

m
tc

+D
yn

_B
eh

–
Pt

rn
_M

✗
✓

✓
✗

✓
✗

30
SA

M
A

D
ro

id
 [1

74
]

20
18

B_
an

al
ys

is
H

yb
rid

M
an

i_
F,

co
d_

F,
Sy

st
em

ca

lle
s

M
L

✗
✗

✗
✗

✗
✗

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

Ta
bl

e 
3  

(c
on

tin
ue

d)

#
To

ol
 n

am
e

Ye
ar

G
oa

l
M

et
ho

d
U

se
d

fe
at

ur
es

Fe
at

ur
e

se
le

ct
io

n
D

et
ec

tio
n

m
et

ho
d

Co
un

te
rin

g
st

at
ic

ch

al
le

ng
es

Co
un

-
te

rin
g

dy
na

m
ic

ch

al
-

le
ng

es

R
N

D
O

X_
P

Em

31
N

TP
D

ro
id

 [1
75

]
20

18
B_

an
al

ys
is

H
yb

rid
M

an
i_

F,
N

et
_b

eh
–

Pt
rn

_M
✗

✗
✗

✗
✗

✗
32

A
lz

ay
la

ee
 [1

45
]

20
17

U
I t

rig
ge

r
D

yn
am

ic
A

PI
 s

ig
na

tu
re

s
–

–
✓

✗
33

M
O

CD
ro

id
 [7

4]
20

16
B_

an
al

ys
is

St
at

ic
Co

d_
F

G
en

et
ic

A
lg

or
ith

m
M

L+
Si

gn
✗

✗
✗

✗
34

A
nd

ro
D

ia
ly

si
s

[7
0]

20
17

B_
an

al
ys

is
St

at
ic

M
an

i_
F

–
M

L
✗

✗
✗

✗
35

W
an

g
et

 a
l.

[1
21

]
20

17
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F,

M
et

a_
F

M
I,C

hi
2,

A
N

O
VA

M
L

✗
✓

✓
✓

36
Pı

nd
ro

id
 [1

28
]

20
17

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
–

M
L

✗
✗

✗
✗

37
D

ro
id

N
at

iv
e

[8
5]

20
17

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
Si

gn
✗

✓
✗

✗
38

So
ko

lo
va

 e
t a

l.
[9

2]
20

17
B_

an
al

ys
is

St
at

ic
Se

m
tc

_F
–

M
L

✗
✗

✗
✗

39
D

u
et

 a
l.

[1
12

]
20

17
B_

an
al

ys
is

St
at

ic
Se

m
tc

_F
–

M
L

✗
✗

✗
✗

40
Pa

lu
m

bo
 e

t a
l.

[8
3]

20
17

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

et
a_

F
Th

re
sh

ol
d

ba
se

d
M

L
✗

✗
✗

✗
41

Ya
ng

 e
t a

l.
[1

06
]

20
17

B_
an

al
ys

is
St

at
ic

M
et

a_
F

IG
Si

gn
✗

✗
✗

✗
42

To
ng

 a
nd

 Y
an

 [1
18

]
20

17
B_

an
al

ys
is

H
yb

rid
Se

m
tc

, D
yn

_B
eh

–
Pt

rn
_M

✗
✓

✓
✗

✗
✗

43
M

ilo
se

vi
c

et
 a

l.
[7

8]
20

17
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
M

L
✗

✗
✗

✗
44

M
al

D
oz

er
 [1

15
]

20
17

B_
an

al
ys

is
St

at
ic

Co
d_

F
D

ee
p_

L
D

ee
p_

L
✗

✗
✗

✗
45

Bu
ch

an
an

 e
t a

l.
[2

4]
20

17
B_

an
al

ys
is

–
–

–
–

46
Re

hm
an

 e
t a

l.
[1

76
]

20
17

B_
an

al
ys

is
H

yb
rid

M
an

i_
F,

Co
d_

F,
D

yn
_B

eh
–

M
L

✗
✗

✗
✗

✗
✗

47
A

lz
ay

la
ee

 e
t a

l.
[5

5]
20

17
B_

an
al

ys
is

D
yn

am
ic

A
PI

 c
al

ls
 a

nd
 In

te
nt

s
IG

M
L

✓
✓

48
W

an
g

et
 a

l.
[9

7]
20

17
B_

an
al

ys
is

D
yn

am
ic

Sy
st

em
 c

al
le

s
–

M
L

✗
✗

49
Pa

ck
er

G
rin

d
[1

55
]

20
17

Pa
ck

er
/u

np
ac

ke
r

H
yb

rid
–

–
–

✗
✓

✓
✓

✗
✗

50
M

ar
tin

el
li

et
 a

l.
[1

77
]

20
17

B_
an

al
ys

is
D

yn
am

ic
Sy

st
em

 c
al

le
s

D
ee

p_
L

D
ee

p_
L

✗
✗

51
Li

an
g

et
 a

l.
[1

78
]

20
17

B_
an

al
ys

is
D

yn
am

ic
Sy

st
em

 c
al

le
s

D
ee

p_
L

D
ee

p_
L

✗
✗

52
Su

 e
t a

l.
[1

79
]

20
17

H
yb

rid
Co

d_
F,

M
an

i_
F,

D
yn

_B
eh

–
M

L
✗

✗
✗

✗
✗

✗
53

CA
SA

N
D

RA
 [1

80
]

20
17

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
M

L
✗

✗
✗

✗
54

Fg
D

et
ec

to
r [

18
1]

20
17

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
PC

A
 a

lg
or

ith
m

M
L

✓
✗

✗
✓

55
M

oh
se

n
et

 a
l.

[1
82

]
20

17
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
M

L
✗

✗
✗

✗
56

D
ee

pF
lo

w
 [1

83
]

20
17

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

D
ee

p_
L

D
ee

p_
L

✗
✗

✗
✗

57
N

ix
 e

t a
l.

[1
17

]
20

17
B_

an
al

ys
is

St
at

ic
Co

d_
F

D
ee

p_
L

D
ee

p_
L

✗
✗

✗
✓

58
D

A
PA

SA
 [1

84
]

20
17

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
M

L
✗

✗
✗

✗
59

R2
-D

2
[2

6]
20

17
B_

an
al

ys
is

Vi
s-

ba
se

d
Co

d_
F,

Im
ag

e_
Fe

at
ur

es
D

ee
p_

L
D

ee
p_

L
✗

✗
✗

✗
60

Ya
ng

 e
t a

l.
[2

7]
20

17
B_

an
al

ys
is

Vi
s-

ba
se

d
Im

ag
e_

Fe
at

ur
es

–
M

L
✗

✗
✗

✗
61

Ka
rim

i e
t a

l.
[2

8]
20

17
B_

an
al

ys
is

Vi
s-

ba
se

d
Se

m
tc

_F
, I

m
ag

e_
Fe

at
ur

es
–

Si
gn

✗
✗

✗
✗

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

Ta
bl

e 
3  

(c
on

tin
ue

d)

#
To

ol
 n

am
e

Ye
ar

G
oa

l
M

et
ho

d
U

se
d

fe
at

ur
es

Fe
at

ur
e

se
le

ct
io

n
D

et
ec

tio
n

m
et

ho
d

Co
un

te
rin

g
st

at
ic

ch

al
le

ng
es

Co
un

-
te

rin
g

dy
na

m
ic

ch

al
-

le
ng

es

R
N

D
O

X_
P

Em

62
D

ex
te

ro
id

 [8
9]

20
16

B_
an

al
ys

is
St

at
ic

Co
d_

F
–

Pt
rn

_M
✗

✗
✗

✗
63

Br
ow

n
et

 a
l.

[8
8]

20
16

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
M

L
✗

✗
✗

✗
64

M
a

et
 a

l.
[1

11
]

20
16

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
–

M
L

✗
✗

✗
✗

65
A

N
A

ST
A

SI
A

 [1
10

]
20

16
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

Tr
ee

s-
Cl

as
si

fie
r

D
ee

p_
L

✗
✗

✗
✗

66
A

nd
ro

-D
um

ps
ys

 [6
4]

20
16

B_
an

al
ys

is
H

yb
rid

Co
d_

F,
M

an
i_

F,
M

et
a_

F,
D

yn
_B

eh
–

Pt
rn

_M
✗

✓
✓

✓
✗

✗

67
A

lb
a

et
 a

l.
[1

23
]

20
16

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
Ch

i2
,R

el
ie

f
M

L
✗

✗
✗

✗
68

Sa
fe

D
ro

id
 [1

85
]

20
16

B_
an

al
ys

is
St

at
ic

Co
d_

F
–

M
L

✗
✗

✗
✗

69
A

SE
 [1

86
]

20
16

B_
an

al
ys

is
St

at
ic

M
an

i_
F,

M
et

a_
F

–
Pt

rn
_M

✗
✗

✗
✗

70
Ku

m
ar

 e
t a

l.
[1

00
]

20
16

B_
an

al
ys

is
Vi

s-
ba

se
d

G
IS

T
im

ag
e

fe
at

ur
e

–
M

L
✗

✗
✗

✗
71

M
am

ad
ro

id
 [1

29
]

20
16

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

PC
A

M
L

✗
✗

✗
✗

72
Ch

an
g

et
 a

l.
[9

8]
20

16
U

I t
rig

ge
r

H
yb

rid
M

an
i_

F,
D

yn
_B

eh
IG

✗
✗

✓
✓

✗
✗

73
Ve

rm
a

an
d

M
ut

to
o

[1
14

]
20

16
B_

an
al

ys
is

St
at

ic
M

et
a_

F
In

fo
rm

at
io

n
ga

in
M

L
✗

✗
✗

✗
74

W
u

et
 a

l.
[1

26
]

20
16

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
M

L
✗

✗
✗

✗
✗

✗
75

D
ee

p4
M

al
D

ro
id

 [1
16

]
20

16
U

I t
rig

ge
r

D
yn

am
ic

Sy
st

em
 c

al
ls

–
D

ee
p_

L
✗

✗
✗

✗
76

D
ro

id
O

L
[1

87
]

20
16

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
M

L
✗

✗
✗

✗
77

D
ro

id
D

et
ec

to
r [

62
]

20
16

B_
an

al
ys

is
H

yb
rid

M
an

i_
F,

Co
de

_F
, D

yn
_B

eh
–

D
ee

p_
L

✗
✗

✓
✓

✗
✗

78
D

yn
al

og
 [1

47
]

20
16

D
_E

nv
D

yn
am

ic
A

PI
 c

al
ls

, o
th

er
 fe

at
ur

es
–

–
✗

✓
79

St
or

m
D

ro
id

 [6
3]

20
16

B_
an

al
ys

is
H

yb
rid

M
an

i_
F,

Co
de

_F
, D

yn
_B

eh
–

M
L

✗
✗

✓
✗

✗
✗

80
Ch

en
 e

t a
l.

[1
88

]
20

16
B_

an
al

ys
is

St
at

ic
Co

de
_F

, S
em

tc
_F

TF
-ID

F
M

L
✗

✗
✓

✗
81

Ju
 e

t a
l.

[1
89

]
20

16
B_

an
al

ys
is

St
at

ic
M

an
i_

F
–

Pt
rn

_M
✗

✗
✗

✗
82

M
m

da
 [1

90
]

20
16

B_
an

al
ys

is
St

at
ic

M
an

i_
F

–
M

L
✗

✗
✗

✗
83

D
ro

id
D

ee
pL

ea
rn

er
 [1

91
]

20
16

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
D

ee
p_

L
D

ee
p_

L
✗

✗
✗

✗
84

Xi
ao

tia
n

et
 a

l.
[1

92
]

20
16

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
M

ar
ko

v
bl

an
ke

t d
is

co
ve

ry

al
go

rit
hm

s
M

L
✗

✗
✗

✗

85
M

an
zh

i e
t a

l.
[1

93
]

20
16

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
M

L
✗

✗
✗

✓
86

A
le

ja
nd

ro
 e

t a
l.

[1
94

]
20

16
B_

an
al

ys
is

St
at

ic
M

an
i_

F,
Se

m
tc

_F
–

M
L

✗
✗

✗
✗

87
D

ro
id

D
ee

p
[1

95
]

20
16

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
D

ee
p

Be
lie

f N
et

w
or

k
(D

BN
)

D
ee

p_
L

✗
✗

✗
✗

88
D

ro
id

Ch
ai

n
[1

96
]

20
16

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
Si

ng
✗

✗
✗

✗
89

RO
A

R
[1

97
]

20
16

B_
an

al
ys

is
St

at
ic

M
an

i_
F,

Se
m

tc
_F

–
Si

ng
✗

✓
✗

✗
90

Xi
ao

tia
n

et
 a

l.
[1

98
]

20
16

B_
an

al
ys

is
St

at
ic

M
an

i_
F,

Se
m

tc
_F

, C
od

_F
–

M
L

✗
✗

✗
✓

91
Sa

lv
ad

or
 e

t a
l.

[1
99

]
20

16
B_

an
al

ys
is

St
at

ic
M

an
i_

F
IG

, R
el

ie
f,

Ch
i2

M
L

✗
✗

✗
✗

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

Ta
bl

e 
3  

(c
on

tin
ue

d)

#
To

ol
 n

am
e

Ye
ar

G
oa

l
M

et
ho

d
U

se
d

fe
at

ur
es

Fe
at

ur
e

se
le

ct
io

n
D

et
ec

tio
n

m
et

ho
d

Co
un

te
rin

g
st

at
ic

ch

al
le

ng
es

Co
un

-
te

rin
g

dy
na

m
ic

ch

al
-

le
ng

es

R
N

D
O

X_
P

Em

92
W

ei
 e

t a
l.

[5
3]

20
15

B_
an

al
ys

is
D

yn
am

ic
N

et
_B

eh
–

M
L

✗
✗

93
El

is
h

et
 a

l.
[8

7]
20

15
B_

an
al

ys
is

St
at

ic
Se

m
tc

_F
–

Pt
rn

_M
✗

✗
✗

✗
94

A
PK

 A
ud

ito
r [

67
]

20
15

B_
an

al
ys

is
St

at
ic

M
an

i_
F

–
Si

gn
✗

✗
✗

✗
95

Ku
rn

ia
w

an
 e

t a
l.

[5
4]

20
15

B_
an

al
ys

is
D

yn
am

ic
R_

Co
n,

 N
et

_B
eh

–
M

L
✗

✗
96

Ye
rim

a
et

 a
l.

[1
19

]
20

15
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

M
I

M
L

✗
✗

✗
✗

97
Ca

nf
or

a
et

 a
l.

[9
1]

20
15

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

M
I

M
L

✗
✗

✗
✗

98
La

nt
z

et
 a

l.
[1

38
]

20
15

B_
an

al
ys

is
St

at
ic

Co
d_

F
–

Pt
rn

_M
✗

✓
✗

✗
99

M
ob

ile
-S

an
db

ox
 [1

27
]

20
15

B_
an

al
ys

is
H

yb
rid

M
an

i_
F,

D
yn

_B
eh

–
M

L
✗

✓
✓

✓
✗

✗
10

0
Li

 e
t a

l.
[2

00
]

20
15

B_
an

al
ys

is
St

at
ic

Co
d_

F
–

Pt
rn

_M
✗

✗
✗

✗
10

1
Ro

sm
an

sy
ah

 a
nd

D

ab
ar

sy
ah

 [2
01

]
20

15
B_

an
al

ys
is

St
at

ic
Co

d_
F

–
M

L
✗

✗
✗

✗

10
2

Li
 e

t a
l.

[2
02

]
20

15
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
M

L
✗

✗
✗

✗
10

3
D

ro
id

Sa
fe

 [2
03

]
20

15
B_

an
al

ys
is

St
at

ic
Co

d_
F

–
–

✗
✓

✗
✗

10
4

Sh
ee

n
et

 a
l.

[1
09

]
20

15
B_

an
al

ys
is

St
at

ic
Co

d_
F

IG
, R

el
ie

f,
Ch

i2
M

L
✗

✗
✗

✗
10

5
Le

e
et

 a
l.

[8
2]

20
15

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

, C
od

_F
–

Si
gn

✗
✗

✗
✗

10
6

M
0D

ro
id

 [2
04

]
20

15
B_

an
al

ys
is

D
yn

am
ic

Sy
st

em
 c

al
le

s
–

Si
gn

✗
✗

10
7

Bu
sh

ra
 e

t a
l.

[2
05

]
20

15
B_

an
al

ys
is

D
yn

am
ic

D
yn

_B
eh

–
M

L
✗

✗
10

8
M

A
RV

IN
 [2

06
]

20
15

B_
an

al
ys

is
H

yb
rid

Co
d_

F,
M

an
i_

F,
N

et
_B

eh
,

Fi
le

_A
cc

Fi
sh

er
 S

co
re

M
L

✗
✓

✓
✓

✗
✗

10
9

A
sh

ut
os

h
et

 a
l.

[2
9]

20
15

Pa
ck

er
/u

np
ac

ke
r

Vi
s-

ba
se

d
–

–
–

✗
✗

✗
✓

11
0

M
ai

or
ca

 e
t a

l.
[1

34
]

20
15

Pa
ck

er
/u

np
ac

ke
r

St
at

ic
–

–
–

✓
✓

✓
✓

11
1

A
nd

la
nt

is
 [2

07
]

20
14

D
_E

nv
D

yn
am

ic
N

et
_B

eh
–

–
✗

✗
✓

✗
✗

✗
11

2
Ad

eb
ay

o
et

 a
l.

[2
08

]
20

14
B_

an
al

ys
is

St
at

ic
Co

d_
F

A
pr

io
ri-

PS
O

M
L

✗
✗

✗
✗

11
3

Ta
in

tD
ro

id
 [5

9]
20

14
B_

an
al

ys
is

D
yn

am
ic

Se
m

tc
_F

–
–

✗
✗

11
4

D
ro

id
Se

nt
in

el
 [2

09
]

20
14

B_
an

al
ys

is
D

yn
am

ic
–

–
Si

gn
✗

✗
11

5
Li

 e
t a

l.
[1

48
]

20
14

B_
an

al
ys

is
D

yn
am

ic
N

et
_B

eh
–

M
L

✗
✗

11
6

M
do

ct
or

 [2
10

]
20

14
B_

an
al

ys
is

St
at

ic
M

an
i_

F,
M

et
a_

F
Si

gn
✗

✗
✗

✗
11

7
M

er
lo

 e
t a

l.
[2

11
]

20
14

B_
an

al
ys

is
D

yn
am

ic
R_

Co
n

–
–

✗
✗

11
8

D
ro

id
Tr

ac
e

[1
42

]
20

14
B_

an
al

ys
is

H
yb

rid
M

an
i_

F,
D

yn
_b

eh
–

Pt
rn

_M
✗

✗
✓

✓
✗

✗
11

9
D

en
dr

oı
d

[2
12

]
20

14
B_

an
al

ys
is

St
at

ic
Se

m
tc

_F
–

M
L

✗
✗

✗
✗

12
0

M
oo

ns
am

y
et

 a
l.

[9
4]

20
14

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
–

M
L

✗
✗

✗
✗

12
1

Pa
sD

ro
id

 [2
13

]
20

14
B_

an
al

ys
is

D
yn

am
ic

Se
m

tc
_F

–
–

✗
✗

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

Ta
bl

e 
3  

(c
on

tin
ue

d)

#
To

ol
 n

am
e

Ye
ar

G
oa

l
M

et
ho

d
U

se
d

fe
at

ur
es

Fe
at

ur
e

se
le

ct
io

n
D

et
ec

tio
n

m
et

ho
d

Co
un

te
rin

g
st

at
ic

ch

al
le

ng
es

Co
un

-
te

rin
g

dy
na

m
ic

ch

al
-

le
ng

es

R
N

D
O

X_
P

Em

12
2

D
ro

id
SI

FT
 [7

1]
20

14
B_

an
al

ys
is

St
at

ic
Se

m
tc

_F
, C

od
_F

–
M

L
✗

✗
✗

✗
12

3
D

re
bi

n
[6

9]
20

14
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
M

L
✗

✗
✗

✗
12

5
Ye

rim
a

et
 a

l.
[2

14
]

20
14

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
–

M
L

✗
✗

✗
✗

12
6

N
g

et
 a

l.
[1

25
]

20
14

B_
an

al
ys

is
D

yn
am

ic
Sy

st
em

 c
al

ls
–

Pt
rn

_M
✗

✗
12

7
M

an
ily

ze
r [

10
8]

20
14

B_
an

al
ys

is
St

at
ic

M
an

i_
F

–
M

L
✗

✗
✗

✗
12

8
A

M
D

et
ec

to
r [

65
]

20
14

B_
an

al
ys

is
H

yb
rid

M
an

i_
F,

Co
d_

F,
D

yn
_B

eh
–

Pt
rn

_M
✗

✗
✓

✗
✗

✗
12

9
A

pp
os

co
py

 [2
15

]
20

14
B_

an
al

ys
is

St
at

ic
Se

m
tc

_F
–

Si
gn

✗
✗

✗
✗

13
0

Xi
ao

ya
n

et
 a

l.
[2

16
]

20
14

B_
an

al
ys

is
St

at
ic

M
an

i_
F

PC
A

 a
lg

or
ith

m
M

L
✗

✗
✗

✗
13

1
Xi

an
gy

u
et

 a
l.

[2
17

]
20

14
B_

an
al

ys
is

St
at

ic
M

an
i_

F
IG

, F
is

he
r S

co
re

, C
hi

2
M

L
✗

✗
✗

✗
13

2
D

ro
id

 D
et

ec
tiv

e
[2

18
]

20
14

B_
an

al
ys

is
St

at
ic

M
an

i_
F

–
Pt

rn
_M

✗
✗

✗
✗

13
3

M
IG

D
ro

id
 [1

43
]

20
14

B_
an

al
ys

is
St

at
ic

Co
d_

F
–

G
_S

im
✓

✗
✗

✗
13

4
Id

re
es

 e
t a

l.
[2

19
]

20
14

B_
an

al
ys

is
St

at
ic

M
an

i_
F

–
M

L
✗

✗
✗

✗
13

5
Ra

ph
ae

l e
t a

l.
[2

20
]

20
14

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
X–

A
N

O
VA

, X
–U

te
st

G
_S

im
✗

✗
✗

✗
13

6
Pa

rk
 e

t a
l.

[8
1]

20
14

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
–

G
_S

im
✗

✗
✗

✗
13

7
D

ro
id

G
ra

ph
 [8

4]
20

14
B_

an
al

ys
is

St
at

ic
Co

d_
F

–
Si

gn
✗

✗
✗

✗
13

8
M

og
ha

dd
am

 e
t a

l.
[7

2]
20

14
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
M

L
✗

✗
✗

✗
13

9
Sh

en
 e

t a
l.

[1
02

]
20

14
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

H
eu

ris
tic

 b
as

ed
G

_S
im

✗
✗

✗
✗

14
0

Br
itt

on
 e

t a
l.

[2
21

]
20

14
B_

an
al

ys
is

St
at

ic
M

an
i_

F,
Se

m
tc

_F
–

M
L

✗
✗

✗
✗

14
1

D
ro

id
A

na
ly

ze
r [

22
2]

20
14

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
–

Si
gn

✗
✗

✗
✗

14
2

D
ee

pa
 e

t a
l.

[2
23

]
20

14
B_

an
al

ys
is

St
at

ic
Co

d_
F

G
K,

 IG
 &

CF
S

M
L

✗
✗

✗
✗

14
3

Sh
ab

ta
i e

t a
l.

[2
24

]
20

14
B_

an
al

ys
is

D
yn

am
ic

N
et

_B
eh

–
M

L
✓

✗
✓

✗
14

4
Ye

rim
a

et
 a

l.
[2

25
]

20
13

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
–

M
L

✗
✗

✓
✓

14
5

A
pp

sP
la

yg
ro

un
d

[5
8]

20
13

D
_E

nv
D

yn
am

ic
–

–
–

✗
✗

14
6

M
ob

ile
-S

an
db

ox
 [1

39
]

20
13

B_
an

al
ys

is
H

yb
rid

M
an

i_
F,

D
yn

_B
eh

–
–

✗
✓

✗
✓

✗
✗

14
7

D
ro

id
Ch

am
el

eo
n

[1
37

]
20

13
Pa

ck
er

/u
np

ac
ke

r
St

at
ic

–
–

–
✗

✗
14

8
D

yn
od

ro
id

 [1
58

]
20

13
U

I t
rig

ge
r

D
yn

am
ic

–
–

–
✗

✗
14

9
Ch

ek
in

a
et

 a
l.

[2
26

]
20

13
B_

an
al

ys
is

D
yn

am
ic

N
et

_B
eh

–
–

✗
✗

15
0

Ka
ra

m
i e

t a
l.

[2
27

]
20

13
U

I t
rig

ge
r

D
yn

am
ic

N
et

_B
eh

, F
ile

_A
cc

–
–

✓
✗

15
1

St
re

am
 [9

9]
20

13
D

_E
nv

D
yn

am
ic

R_
Co

n,
 N

et
_B

eh
M

L
✗

✗
15

2
M

as
’u

d
et

 a
l.

[6
6]

20
13

B_
an

al
ys

is
H

yb
rid

M
an

i_
F,

Co
d_

F,
Sy

s_
ca

ll,

N
et

_B
eh

–
–

✗
✗

✗
✗

✗
✗

15
3

A
EM

F
[2

28
]

20
13

B_
an

al
ys

is
D

yn
am

ic
Se

m
tc

_F
–

Pt
rn

_M
✗

✗

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

Ta
bl

e 
3  

(c
on

tin
ue

d)

#
To

ol
 n

am
e

Ye
ar

G
oa

l
M

et
ho

d
U

se
d

fe
at

ur
es

Fe
at

ur
e

se
le

ct
io

n
D

et
ec

tio
n

m
et

ho
d

Co
un

te
rin

g
st

at
ic

ch

al
le

ng
es

Co
un

-
te

rin
g

dy
na

m
ic

ch

al
-

le
ng

es

R
N

D
O

X_
P

Em

15
4

D
ro

id
A

PI
M

in
er

 [7
5]

20
13

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
–

M
L

✗
✓

✓
✗

15
5

Sa
m

ra
 e

t a
l.

[6
8]

20
13

B_
an

al
ys

is
St

at
ic

M
an

i_
F

–
M

L
✗

✗
✗

✗
15

6
A

pp
G

ua
rd

 [2
29

]
20

13
Po

lic
y_

En
f

St
at

ic
–

–
Po

lic
y

✗
✗

✗
✗

15
7

A
3

[8
0]

20
13

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
Pt

rn
_M

✗
✗

✗
✗

15
8

Au
ng

 e
t a

l.
[1

13
]

20
13

B_
an

al
ys

is
St

at
ic

M
an

i_
F

IG
M

L
✗

✗
✗

✗
15

9
W

H
YP

ER
 [9

0]
20

13
B_

an
al

ys
is

St
at

ic
M

an
i_

F
–

–
✗

✗
✗

✗
16

0
D

ro
id

O
Ly

tic
s

[1
03

]
20

15
B_

an
al

ys
is

St
at

ic
Se

m
tc

_F
Si

m
ila

rit
y

di
ge

st
 h

as
hi

ng
Si

gn
✓

✗
✗

✗
16

1
Pe

ira
vi

an
 e

t a
l.

[2
30

]
20

13
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
M

L
✗

✗
✗

✗
16

2
G

lo
de

k
et

 a
l.

[1
40

]
20

13
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
M

L
✗

✓
✗

✗
16

3
Lu

 e
t a

l.
[2

31
]

20
13

B_
an

al
ys

is
St

at
ic

M
an

i_
F

–
M

L
✗

✗
✗

✗
16

4
A

nD
ar

w
in

 [1
05

]
20

13
B_

an
al

ys
is

St
at

ic
Se

m
tc

_F
–

Pt
rn

_M
✓

✗
✗

✗
16

5
Yu

 e
t a

l.
[2

32
]

20
13

B_
an

al
ys

is
D

yn
am

ic
Sy

st
em

 c
al

le
s

–
M

L
✗

✗
16

6
A

la
m

 e
t a

l.
[2

33
]

20
13

B_
an

al
ys

is
D

yn
am

ic
Co

m
bi

na
tio

n
–

M
L

✗
✗

16
7

H
am

 e
t a

l.
[2

34
]

20
13

B_
an

al
ys

is
D

yn
am

ic
R_

Co
n

–
M

L
✗

✗
16

8
Ve

tD
ro

id
 [2

35
]

20
13

B_
an

al
ys

is
D

yn
am

ic
–

–
–

✗
✗

16
9

Co
pp

er
D

ro
id

 [1
49

]
20

13
B_

an
al

ys
is

D
yn

am
ic

Sy
st

em
 c

al
ls

–
–

✗
✓

✗
✗

✓
✗

17
0

D
ro

id
A

na
ly

tic
s

[2
36

]
20

13
B_

an
al

ys
is

H
yb

rid
M

an
i_

F,
A

PI
 c

al
ls

–
Si

gn
✓

✗
✓

✓
✗

✗
17

1
A

N
A

N
A

S
[2

37
]

20
13

B_
an

al
ys

is
D

yn
am

ic
N

et
_B

eh
, S

ys
te

m
 c

al
le

s
–

–
✗

✓
✓

✗
17

2
Pu

m
a

[2
38

]
20

13
B_

an
al

ys
is

St
at

ic
M

an
i_

F
–

M
L

✗
✗

✗
✗

17
3

H
ua

ng
 e

t a
l.

[1
54

]
20

13
Pa

ck
er

/u
np

ac
ke

r
St

at
ic

–
–

–
17

4
D

ro
id

Lo
gg

er
 [5

6]
20

12
B_

an
al

ys
is

H
yb

rid
Co

d_
F,

D
yn

_B
eh

–
–

✗
✗

✗
✓

✗
✗

17
5

Sm
ar

tD
ro

id
 [2

39
]

20
12

U
I t

rig
ge

r
H

yb
rid

Se
m

tc
_F

, D
yn

_B
eh

–
–

✗
✗

✗
✗

✗
✗

17
6

D
ro

id
Ra

ng
er

 [1
41

]
20

12
U

I t
rig

ge
r

H
yb

rid
M

an
i_

F,
D

yn
_B

–
Si

gn
✗

✓
✓

✗
✗

✗
17

7
Pr

ofi
le

D
ro

id
 [2

40
]

20
12

D
_E

nv
H

yb
rid

M
an

i_
F,

D
yn

_B
–

–
✗

✗
✗

✗
✗

✗
17

8
D

ro
id

Sc
op

e
[6

0]
20

12
D

_E
nv

D
yn

am
ic

Se
m

tc
_F

–
–

✗
✗

17
9

A
nd

ro
id

Ri
pp

er
 [1

57
]

20
12

U
I t

rig
ge

r
D

yn
am

ic
–

–
–

✓
✗

18
0

A
nd

ro
id

Le
ak

s
[9

3]
20

12
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
Si

gn
✗

✗
✗

✗
18

1
Sa

nz
 e

t a
l.

[9
5]

20
12

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F,
M

et
a_

F
IG

M
L

✗
✗

✗
✗

18
2

D
ro

id
M

at
 [9

3]
20

12
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
M

L
✗

✗
✗

✗
18

3
D

ro
id

M
O

SS
 [1

44
]

20
12

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

et
a_

F
Fu

zz
y

ha
sh

in
g

Si
gn

✓
✗

✗
✗

18
4

Ri
sk

Ra
nk

er
 [1

04
]

20
12

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
Si

gn
✗

✓
✗

✓

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

Ta
bl

e 
3  

(c
on

tin
ue

d)

#
To

ol
 n

am
e

Ye
ar

G
oa

l
M

et
ho

d
U

se
d

fe
at

ur
es

Fe
at

ur
e

se
le

ct
io

n
D

et
ec

tio
n

m
et

ho
d

Co
un

te
rin

g
st

at
ic

ch

al
le

ng
es

Co
un

-
te

rin
g

dy
na

m
ic

ch

al
-

le
ng

es

R
N

D
O

X_
P

Em

18
5

W
ei

 e
t a

l.
[2

41
]

20
12

B_
an

al
ys

is
St

at
ic

M
an

i_
F

–
–

✗
✗

✗
✗

18
6

M
A

D
A

M
 [2

42
]

20
12

B_
an

al
ys

is
D

yn
am

ic
Sy

st
em

 c
al

le
s

&
 o

th
er

D

yn
_B

eh
–

M
L

✗
✗

18
7

Sa
hs

 e
t a

l.
[2

43
]

20
12

B_
an

al
ys

is
St

at
ic

M
an

i_
F,

Se
m

tc
_F

–
M

L
✗

✗
✗

✗
18

8
Sa

nz
 e

t a
l.

[9
5]

20
12

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F,
M

et
a_

F
IG

M
L

✗
✗

✗
✗

18
9

Ya
ng

 e
t a

l.
[2

44
]

20
12

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
–

✗
✗

✗
✗

19
0

G
as

co
n

et
 a

l.
[2

45
]

20
12

B_
an

al
ys

is
St

at
ic

Se
m

tc
_F

–
M

L
✗

✗
✗

✓
19

1
A

D
A

M
 [1

31
]

20
12

Pa
ck

er
/u

np
ac

ke
r

St
at

ic
–

–
–

19
2

YA
A

SE
 [1

51
]

20
11

Po
lic

y_
En

f
D

yn
am

ic
–

–
Po

lic
y

✗
✗

19
3

Xm
an

D
ro

id
 [1

50
]

20
11

Po
lic

y_
En

f
D

yn
am

ic
–

–
Po

lic
y

✗
✗

19
4

Sa
in

t [
15

2]
20

12
Po

lic
y_

En
f

D
yn

am
ic

–
–

Po
lic

y
✗

✗
19

5
Su

 e
t a

l.
[2

46
]

20
11

B_
an

al
ys

is
D

yn
am

ic
N

et
_B

eh
, S

ys
te

m
 c

al
le

s
–

M
L

✗
✗

19
6

Q
U

IR
E

(2
01

1
dy

na
m

ic
 4

)
20

11
D

_E
nv

D
yn

am
ic

–
–

Po
lic

y
✗

✗
19

7
St

ow
aw

ay
 [7

6]
20

11
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
Pt

rn
_M

✗
✗

✗
✗

19
8

Cr
ow

dr
oi

d
[2

47
]

20
11

B_
an

al
ys

is
D

yn
am

ic
Sy

st
em

 c
al

ls
–

M
L

✗
✗

19
9

Co
m

D
ro

id
 [2

48
]

20
11

B_
an

al
ys

is
St

at
ic

Co
d_

F,
M

an
i_

F
–

–
✗

✗
✗

✗
20

0
Is

oh
ar

a
[2

49
]

20
11

B_
an

al
ys

is
D

yn
am

ic
Sy

st
em

 c
al

le
s

–
Si

gn
✗

✗
20

1
A

pe
x

[2
50

]
20

10
Po

lic
y_

En
f

D
yn

am
ic

–
–

Po
lic

y
✗

✗
20

2
Po

rs
ch

a
[2

51
]

20
10

Po
lic

y_
En

f
D

yn
am

ic
–

–
Po

lic
y

✗
✗

20
3

Cr
eP

E
[2

52
]

20
10

Po
lic

y_
En

f
D

yn
am

ic
–

–
Po

lic
y

✗
✗

20
4

Pa
ra

no
id

 [2
53

]
20

10
B_

an
al

ys
is

D
yn

am
ic

M
ul

tip
le

 D
yn

_B
eh

 fe
at

ur
es

–
–

✗
✗

20
5

Ba
rr

er
a

et
 a

l.
[2

54
]

20
10

B_
an

al
ys

is
St

at
ic

M
an

i_
F

–
M

L
✗

✗
✗

✗
20

6
A

A
Sa

nd
bo

x
[2

55
]

20
10

D
_E

nv
H

yb
rid

Co
d_

F,
M

an
i_

F,
Sy

st
em

ca

lle
s

–
–

✗
✓

✗
✓

✗
✗

20
7

Sh
ab

ta
i e

t a
l.

[2
56

]
20

10
B_

an
al

ys
is

St
at

ic
Co

d_
F,

M
an

i_
F

–
M

L
✗

✗
✗

✗
20

8
Ki

rin
 [2

57
]

20
09

Po
lic

y_
En

f
St

at
ic

M
an

i_
F

–
Po

lic
y

✗
✗

✗
✗

Co
d_

F,
co

de
 b

as
ed

 fe
at

ur
es

; S
em

tc
_F

, s
em

an
tic

 fe
at

ur
es

; M
an

i_
F,

m
an

ife
st

 fe
at

ur
es

; M
et

a_
F,

ap
p

m
et

ad
at

a
fe

at
ur

es
; R

_C
on

, r
es

ou
rc

e
co

ns
um

pt
io

n;
 N

et
_B

eh
, n

et
w

or
k

be
ha

vi
or

; D
yn

_B
eh

,
dy

nm
ic

 B
eh

av
io

r;
R,

 re
pa

ck
ag

in
g;

 N
, n

at
iv

e
co

de
; D

, d
yn

am
ic

 p
ay

lo
ad

; O
, o

bf
us

ca
tio

n
te

ch
ni

qu
es

; X
_P

, c
ov

er
ag

e
of

 a
ll

ex
ec

ut
io

n
pa

th
s;

 E
m

, a
nt

i-e
m

ul
at

or
 te

ch
ni

qu
es

; M
L,

 m
ac

hi
ne

 le
ar

ni
ng

;
Si

gn
, s

ig
na

tu
re

 b
as

ed
; P

tr
n_

M
, p

at
te

rn
’s

m
at

ch
in

g;
 P

ol
c&

Ru
l,

po
lic

y
&

 ru
le

s
ba

se
d;

 G
_S

im
, g

ra
ph

 s
im

ila
rit

y;
 V

is
-b

as
ed

, v
is

ua
lis

at
io

n-
ba

se
d;

 R
ul

es
, r

ul
es

-b
as

ed
; P

ol
ic

y,
 p

ol
ic

y-
ba

se
d;

 D
ee

p_
L,

de

ep
 le

ar
ni

ng
; M

I,
m

ut
ua

l i
nf

or
m

at
io

n;
 IG

, i
nf

or
m

at
io

n
ga

in
s;

 C
os

_S
im

, c
os

in
e

si
m

ila
rit

y;
 C

FS
, c

or
re

la
tio

n
fe

at
ur

e
se

le
ct

io
n;

 G
K,

 G
oo

dm
an

 K
ru

sk
al

s

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

analysing process in a way that enables the researcher to
take a comprehensive look to the domain without much
effort. We believe that the existence of such models is
very important in reviews papers in all domains to give an
abstracted description of the most research trends in the
domain using one model. The process of malware analys-
ing has been described in multiple phases, these phases
were described detailly in a schematic manner, as showed
in Fig. 12. To the best of our knowledge, it is the first time
that this process is described in this way with these much
of details. The most techniques and methods that used in
the studied works have been overviewed and organized
under multiple phases. These phases have been discussed
in detail in the ‘Used techniques phases-based taxonomy’
section.

6 � Decision and future works areas

Although there are many reviews that have been con-
ducted in order to highlight the works that achieved in
Android malware analysing domain, there is no compre-
hensive taxonomy for all research trends in this domain.
Furthermore, none of the existing review papers contains
a schematic model that makes it easy for the reader to
know the methods and methodologies used in a particular
field of research without much effort. This paper aims at
proposing a comprehensive taxonomy and suggesting a
detailed schematic review approach. To this end, a large
number of works that published within a period of time
that almost starting from the date of the emergence of the
first malicious applications targeting the Android system

Fig. 12   The proposed Android malware detection methodologies schematic model

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

until the present time have been studied. Also, a compre-
hensive taxonomy has been suggested so that including as
most as possible research trends in this domain. Moreover,
a novel detailed schematic model called Schematic Review
has been developed. It has been observed that most of
the studied works use static analysis method. Also, it has
been noted that most of the previously conducted works
do not address the analysis evasions techniques such as
Native code usage, Dynamic code loading, repackaging,
or code encryption. In addition, we have observed that
most of the works that looked comprehensive to some
extent face problems such as increasing complexity and
computational time or it is un-automated frameworks. We
also noted that the malware-visualization based analysis
method has been used in a very small number of the
studied works although of its success in desktop malware
detection domain. Moreover, almost all static works have
been done based on the bytecode level, only in two stud-
ies, the application was analysed based on the Native code
level, and no study has analysed the two level of code.
Thus, the common weak point of all designed static anal-
ysis-based approaches is the analysis of the Native code.
It has been noted that semantic features were not used
extensively in the studied works. In addition, the features’
engineering and selection methods were used only in 39
studies. Furthermore, deep learning techniques have been
tested only in 14 studies. In terms of the used dataset, we
noted that most of the developed frameworks have been
evaluated using a benign dataset that downloaded from
the official market, and the well-known malicious datasets
like Drebin, Malgenom as a malware dataset. In a small
part of works, a mix of apps that downloaded from the
official market and the third-party markets have been
used as a benign dataset. And a mix of the well-known
malicious datasets and some samples that collected from
the internet have been used as a malicious dataset a in
small number of works. In addition, the dynamic analysis
drawbacks have not been addressed in most of the works
which use this analysing method (whether dynamic or
hybrid analysis frameworks). Also, most of the proposed
dynamic frameworks suffer from increased overhead and
computational complexity. Furthermore, most of the
dynamic analysis frameworks use random-based events
generation tools for interacting with the tested program
(such as MonkeyRunner), so some app’s execution paths
can be missed. Thus, there is an urgent need for deeper
and more comprehensive analysis methods such that all
malware developers’ camouflage technologies such as
obfuscation, dynamic loading, native code…etc. can be
addressed. Moreover, the proposed tools should maintain
the performance at an acceptable level and the needed
user intervention should be as low as possible. Therefore,
we suggest constructing the app markets’ future security

tools based on multi-levels analysis frameworks. In other
words, the applications should be filtered according to
their severity level so that a small number of applications
reach the stages of analysis that need a great analysing
cost. Thus, a signature-based or heuristic-based method
can be used in the first level, to this end, a lightweight
signatures database should be constructed, and the apps
are matched with it. In case the application is not matched
any signature, it will be transferred to the second level in
which a lightweight static analysis-based method can be
used. If the application can be judged to be benign or
malicious with no doubt the analysis will be ended. On
the other hand, if the app has a suspicious behaviour or
in case that the app uses obfuscation, dynamic content
loading techniques…etc. it will be transferred to the third
analysing level, which we propose to be a dynamic analysis
method. In the third level, the app will be executed in an
analysing environment and its behaviour will be studied
by extracting as many as possible dynamic features. If a
decision cannot be taken the extracted static and dynamic
features can be analysed in a hybridized manner. Moreo-
ver, it is possible to add another level to this model, so that
if the system is unable to judge on the app’s behaviour
clearly, the reports can be studied by the analyst manu-
ally to give a final decision. Also, the signature database
should be updated according to the decisions that taken
in the analysing levels. Using this method, the applications
are filtered so that only a few applications will reach to
the final stage. Consequently, just a few applications will
take a lot of analysis time, thus it will significantly reduce
the overall overhead comparing with performing hybrid
or dynamic analysis on all applications which will be ana-
lysed. More importantly, the App Store will have a high
level of protection.

Through the extensive study carried out in this paper,
some points which should be focused in future works were
identified.

6.1 � Static analysis

As noted previously, the static analysis methods face many
challenges. Although some of the static analysis’s draw-
backs have been addressed to some extent in a number
of previous works, there is still a need for more focus on
finding stronger solutions that avoid previous solutions’
weaknesses. Therefore, it is necessary to focus on the fol-
lowing areas in the future works.

6.1.1 � Native code and bytecode analysis

The most of previous works are limited to analysis at byte-
code level and a few of studies have addressed the analysis
at the native code level, and almost there is no framework

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

that works at both bytecode and native code. For example,
Alam et al. [85] focus on analysing apps at the native code
level and when needed to analyse a bytecode, it must be
converted into native code and extracting native code-
based features. However, this system suffers from some
weaknesses such as the inability to detect zero-day mal-
ware and it is limited to detect previously known malware.
Therefore, it should be focused on building frameworks
that extract features from the two code levels, in order to
obtain a deeper analysis for the applications and closing
the door in front of embedding the malicious code within
the native code libraries.

6.1.2 � Tackle obfuscation techniques

As mentioned before, obfuscation techniques are one of
the biggest static analysis techniques’ challenges, and it
has been dealt with very limited in previous studies. Thus,
there is an urgent need to find more robust solutions
based on more semantic features to counter obfuscation
techniques such as reflection, control flow obfuscation,
Junk code insertion…etc.

6.2 � Dynamic analysis

Although the dynamic analysis is the solution used to
address static analysis method’s drawbacks, there are
some effective techniques used by developers of malicious
applications to defeat this analysing method. For example,
in 2017, a number of malicious applications that exceeded
the protection of the android official market have been
discovered by McAfee’s staff and has been downloaded by
a large number of users [9]. So, we have suggested some
trends that can be focused on it in future works.

6.2.1 � User interface triggers

The problem of covering the entire app’s code and scan-
ning all possible app’s execution paths is one of the most
important problems of dynamic analysing methods [33],
because of that the most of the used UI trigger tools gen-
erates random events, so the app’s source code will not be
fully covered. Also, the malware’s developers can depend
on the generated UI events’ frequency to discover whether
the application is executed in an analysing environment
in order to stop the malicious content’s execution and
executing a fake benign code. Therefore, semantic-based
robust tools should be developed to detect events that
should be triggered so that all the app’s source code can
be covered, and the user interfaces can be triggered using
well-defined events.

6.2.2 � Counter anti‑emulator technologies

These techniques are used to detect whether the applica-
tion is being executed in an analysing environment and
thereby hide its malicious behaviour [121, 146]. In some
previous works such as [159], some steps have been taken
to mitigate the effects of these techniques, but there is an
urgent need to develop countermeasure techniques that
can overcome these technologies and detect malicious
applications that using it.

6.2.3 � Time complexity

one of important challenge that facing dynamic analy-
sis methods is how to reduce the time that required for
executing the application, collecting the features and
making the right decision. In addition to the difficulty of
implementing this procedure in a fully automated man-
ner. Therefore, it is useful to focus on this aspect in future
works.

Furthermore, comprehensive datasets should be used
so that it should include a collection of benign applica-
tions from both official and third-party markets and a mix
of well-known malicious datasets’ samples and as much as
possible of new daily published malware samples.

7 � Conclusions

After the proliferation of malicious applications target-
ing devices which use the Android operating system,
it became necessary to find solutions to address these
threats. Therefore, the detection of malicious applica-
tions targeting Android becomes one of the most impor-
tant scientific research’s trends. Thus, a large number of
frameworks have been proposed and developed from
2009 till these days. In this paper, an extensive study that
includes more than 200 papers published between 2009
and 2019 has been conducted. In addition to analysing
the studied works according to multiple criteria. Also, we
have been proposed a robust and comprehensive tax-
onomy in the light of the studied works such that most
of the conducted works in this domain can be classified
under it. Also, we proposed a detailed schematic model
called Schematic Review Model illustrating the process of
Android malware detection. To our knowledge, this is the
first time that this process is explained in this way with this
amount of details. Furthermore, the features that used in
the studied works have been discussed in detail and has
been classified into multiple classes. Also, we examined in
detail the most important challenges that facing the com-
monly used analysing methods. Moreover, we have made
a comprehensive summary of all the works that covered in

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

the paper with indicating the challenges facing the used
analysing methods that have been addressed in each of
which. We concluded that there is a shortage in most of
the works that have been accomplished in this field, and
therefore some points have been suggested to be covered
in the future works.

Compliance with ethical standards 

Conflict of interest  None of the authors of this paper has a financial
or personal relationship with other people or organizations that
could inappropriately influence or bias the content of the paper.

References

	 1.	 Gartner_Q2 (2017) Gartner says demand for 4G smartphones in
emerging markets spurred growth in second quarter of 2017.
https​://www.gartn​er.com/newsr​oom/id/37889​63. Accessed 14
July 2018

	 2.	 Gartner_Q4 (2017) Gartner says worldwide sales of smart-
phones recorded first ever decline during the fourth quarter
of 2017. https​://www.gartn​er.com/newsr​oom/id/38599​63.
Accessed 11 July 2018

	 3.	 Statista_a (2018) Number of available applications in the
Google Play Store from December 2009 to June 2018. https​://
www.stati​sta.com/stati​stics​/26621​0/numbe​r-of-avail​able-appli​
catio​ns-in-the-googl​e-play-store​/. Accessed 13 July 2018

	 4.	 Statista_b (2018) Growth of available mobile apps at Google
Play worldwide from 2nd quarter 2015 to 1st quarter 2018.
https​://www.stati​sta.com/stati​stics​/18572​9/googl​e-play-quart​
erly-growt​h-of-avail​able-apps/. Accessed 13 July 2018

	 5.	 Statista_c (2018) Cumulative number of apps downloaded
from the Google Play as of May 2016 (in billions). https​://www.
stati​sta.com/stati​stics​/28110​6/numbe​r-of-andro​id-app-downl​
oads-from-googl​e-play/. Accessed 14 July 2018

	 6.	 Pulse_Secure (2015) Mobile threat report. 2015: Pulse Secure
Mobile Threat Center (MTC)

	 7.	 Symantec (2016) Internet security threat report. Internet report
	 8.	 G-Data (2017) 8,400 new android malware samples every

day. https​://www.gdata​softw​are.com/blog/2017/04/29712​
-8-400-new-andro​id-malwa​re-sampl​es-every​-day. Accessed
14 July 2018

	 9.	 McAfee (2017) New android malware found in 144 Google Play
Apps. https​://secur​ingto​morro​w.mcafe​e.com/mcafe​e-labs/
andro​id-malwa​re-grabo​s-expos​ed-milli​ons-to-pay-per-insta​
ll-scam-on-googl​e-play/. Accessed 14 July 2018

	 10.	 Faruki P et al (2015) Android security: a survey of issues, mal-
ware penetration, and defenses. IEEE Commun Surv Tutor
17(2):998–1022. https​://doi.org/10.1109/comst​.2014.23861​39

	 11.	 Tan DJ, Chua T-W, Thing VL (2015) Securing android: a survey,
taxonomy, and challenges. ACM Comput Surv (CSUR) 47(4):58

	 12.	 Tam K et al (2017) The evolution of android malware and
android analysis techniques. ACM Comput Surv (CSUR) 49(4):76

	 13.	 Rashidi B, Fung CJ (2015) A survey of android security threats
and defenses. JoWUA 6(3):3–35

	 14.	 Sadeghi A et al (2017) A taxonomy and qualitative compari-
son of program analysis techniques for security assessment of
android software. IEEE Trans Softw Eng 43(6):492–530. https​://
doi.org/10.1109/tse.2016.26153​07

	 15.	 Feizollah A et al (2015) A review on feature selection in
mobile malware detection. Digit Investig 13:22–37. https​://
doi.org/10.1016/j.diin.2015.02.001

	 16.	 Li L et al (2017) Static analysis of android apps: a systematic
literature review. Inf Softw Technol 88:67–95. https​://doi.
org/10.1016/j.infso​f.2017.04.001

	 17.	 Bakour K, Ünver HM, Ghanem R (2018) The android malware
static analysis: techniques, limitations, and open challenges.
In: 2018 3rd international conference on computer science
and engineering (UBMK). IEEE

	 18.	 Android_PlayProtect (2018) Play protect. https​://www.andro​
id.com/play-prote​ct/. Accessed 14 July 2018

	 19.	 Xie L et al (2010) pBMDS: a behavior-based malware detec-
tion system for cellphone devices. In: Proceedings of the
third ACM conference on wireless network security. ACM

	 20.	 Vidas T, Christin N, Cranor L (2011) Curbing android permis-
sion creep. In: Proceedings of the web

	 21.	 Bartel A et al (2012) Automatically securing permission-based
software by reducing the attack surface: an application to
android. In: Proceedings of the 27th IEEE/ACM international
conference on automated software engineering. ACM

	 22.	 Stirparo P et al (2013) In-memory credentials robbery on
android phones. In: 2013 world congress on internet security
(WorldCIS). IEEE

	 23.	 Grace MC et al (2012) Unsafe exposure analysis of mobile
in-app advertisements. In: Proceedings of the fifth ACM
conference on security and privacy in wireless and mobile
networks. ACM

	 24.	 Buchanan WJ, Chiale S, Macfarlane R (2017) A methodology
for the security evaluation within third-party android mar-
ketplaces. Digit Investig 23:88–98. https​://doi.org/10.1016/j.
diin.2017.10.002

	 25.	 Felt AP et al (2012) Android permissions: user attention,
comprehension, and behavior. In: Proceedings of the eighth
symposium on usable privacy and security. ACM

	 26.	 Huang TH-D, Kao H-Y (2017) R2-D2: color-inspired convolu-
tional neural network (CNN)-based android malware detec-
tions. arXiv preprint arXiv​:1705.04448​

	 27.	 Yang M, Wen Q (2017) Detecting android malware by apply-
ing classification techniques on images patterns. In: 2017
IEEE 2nd international conference on cloud computing and
big data analysis (ICCCBDA). IEEE

	 28.	 Karimi A, Moattar MH (2017) Android ransomware detection
using reduced opcode sequence and image similarity. In:
2017 7th international conference on computer and knowl-
edge engineering (ICCKE). IEEE

	 29.	 Jain A, Gonzalez H, Stakhanova N (2015) Enriching reverse
engineering through visual exploration of android binaries.
In: Proceedings of the 5th program protection and reverse
engineering workshop. ACM

	 30.	 Yen Y-S, Sun H-M (2019) An android mutation malware detec-
tion based on deep learning using visualization of impor-
tance from codes. Microelectron Reliab 93:109–114

	 31.	 APKTool (2018) A tool for reverse engineering android apk
files. https​://ibotp​eache​s.githu​b.io/Apkto​ol/. Accessed 14
July 2018

	 32.	 Gurulian I et al (2016) You can’t touch this: consumer-
centric android application repackaging detection. Future
Gener Comput Syst 65:1–9. https​://doi.org/10.1016/j.futur​
e.2016.05.021

	 33.	 Zhu H-J et al (2018) DroidDet: effective and robust detection
of android malware using static analysis along with rotation
forest model. Neurocomputing 272:638–646. https​://doi.
org/10.1016/j.neuco​m.2017.07.030

	 34.	 JD-Project (2018) Java Decompiler project. http://jd.benow​.ca/.
Accessed 14 July 2018

https://www.gartner.com/newsroom/id/3788963
https://www.gartner.com/newsroom/id/3859963
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/185729/google-play-quarterly-growth-of-available-apps/
https://www.statista.com/statistics/185729/google-play-quarterly-growth-of-available-apps/
https://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/
https://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/
https://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://securingtomorrow.mcafee.com/mcafee-labs/android-malware-grabos-exposed-millions-to-pay-per-install-scam-on-google-play/
https://securingtomorrow.mcafee.com/mcafee-labs/android-malware-grabos-exposed-millions-to-pay-per-install-scam-on-google-play/
https://securingtomorrow.mcafee.com/mcafee-labs/android-malware-grabos-exposed-millions-to-pay-per-install-scam-on-google-play/
https://doi.org/10.1109/comst.2014.2386139
https://doi.org/10.1109/tse.2016.2615307
https://doi.org/10.1109/tse.2016.2615307
https://doi.org/10.1016/j.diin.2015.02.001
https://doi.org/10.1016/j.diin.2015.02.001
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1016/j.infsof.2017.04.001
https://www.android.com/play-protect/
https://www.android.com/play-protect/
https://doi.org/10.1016/j.diin.2017.10.002
https://doi.org/10.1016/j.diin.2017.10.002
http://arxiv.org/abs/1705.04448
https://ibotpeaches.github.io/Apktool/
https://doi.org/10.1016/j.future.2016.05.021
https://doi.org/10.1016/j.future.2016.05.021
https://doi.org/10.1016/j.neucom.2017.07.030
https://doi.org/10.1016/j.neucom.2017.07.030
http://jd.benow.ca/

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

	 35.	 pxb1988 (2018) Tools to work with android.dex and java.class
files. https​://githu​b.com/pxb19​88/dex2j​ar. Accessed 14 July
2018

	 36.	 Mike-Strobel (2018) Procyon: a suite of Java metaprogramming
tools. https​://bitbu​cket.org/mstro​bel/procy​on. Accessed 14
July 2018

	 37.	 SIIS (2018) ded: decompiling android applications. http://siis.
cse.psu.edu/ded/. Accessed 14 July 2018

	 38.	 Androguard (2018) Reverse engineering, malware and good-
ware analysis of android applications. https​://code.googl​
e.com/archi​ve/p/andro​guard​/. Accessed 15 July 2018

	 39.	 Skylot-jadx (2018) Dex to Java decompiler. https​://githu​b.com/
skylo​t/jadx. Accessed 15 July 2018

	 40.	 Monkeyrunner (2018) https​://devel​oper.andro​id.com/studi​o/
test/monke​yrunn​er/. Accessed 15 July 2018

	 41.	 honeynet-droidbot (2018) A lightweight test input generator
for android. https​://githu​b.com/honey​net/droid​bot. Accessed
15 July 2018

	 42.	 Adb (2018) Android Debug Bridge (adb). https​://devel​oper.
andro​id.com/studi​o/comma​nd-line/adb. Accessed 15 July
2018

	 43.	 Logcat (2018) Logcat command-line tool. https​://devel​oper.
andro​id.com/studi​o/comma​nd-line/logca​t. Accessed 15 July
2018

	 44.	 droidbox (2018) Dynamic analysis of android apps. https​://
githu​b.com/pjlan​tz/droid​box. Accessed 15 July 2018

	 45.	 Robotium (2018) Android UI testing. https​://githu​b.com/Robot​
iumTe​ch/robot​ium. Accessed 15 July 2018

	 46.	 Strace (2018) Linux syscall tracer. https​://strac​e.io/. Accessed
15 July 2018

	 47.	 TcpDump (2018) tcpdump, a powerful command-line packet
analyzer. http://www.tcpdu​mp.org/. Accessed 15 July 2018

	 48.	 Chen S et al (2018) Automated poisoning attacks and defenses
in malware detection systems: an adversarial machine learning
approach. Comput Secur 73:326–344. https​://doi.org/10.1016/j.
cose.2017.11.007

	 49.	 Wang W, Zhao M, Wang J (2018) Effective android malware
detection with a hybrid model based on deep autoencoder
and convolutional neural network. J Ambient Intell Humaniz
Comput. https​://doi.org/10.1007/s1265​2-018-0803-6

	 50.	 Kirubavathi G, Anitha R (2017) Structural analysis and detec-
tion of android botnets using machine learning techniques.
Int J Inf Secur 17(2):153–167. https​://doi.org/10.1007/s1020​
7-017-0363-3

	 51.	 Tao G et al (2018) MalPat: mining patterns of malicious and
benign android apps via permission-related APIs. IEEE Trans
Reliab 67(1):355–369. https​://doi.org/10.1109/tr.2017.27781​47

	 52.	 Somarriba O, Zurutuza U (2017) A collaborative framework for
android malware detection using DNS & dynamic analysis. In:
2017 IEEE 37th Central America and Panama convention (CON-
CAPAN XXXVII)

	 53.	 Wei S et al (2015) Mining network traffic for application cat-
egory recognition on android platform. In: 2015 IEEE interna-
tional conference on progress in informatics and computing
(PIC). IEEE

	 54.	 Kurniawan H, Rosmansyah Y, Dabarsyah B (2015) Android
anomaly detection system using machine learning classifica-
tion. In: 2015 international conference on electrical engineer-
ing and informatics (ICEEI). IEEE

	 55.	 Alzaylaee MK, Yerima SY, Sezer S (2017) Emulator vs real phone:
android malware detection using machine learning. In: Pro-
ceedings of the 3rd ACM on international workshop on security
and privacy analytics. ACM

	 56.	 Shuaifu D, Tao W, Wei Z (2012) DroidLogger: reveal suspicious
behavior of android applications via instrumentation. In: 2012

7th international conference on computing and convergence
technology (ICCCT)

	 57.	 Ali-Gombe AI et al (2018) Toward a more dependable hybrid
analysis of android malware using aspect-oriented program-
ming. Comput Secur 73:235–248. https​://doi.org/10.1016/j.
cose.2017.11.006

	 58.	 Rastogi V, Chen Y, Enck W (2013) AppsPlayground: automatic
security analysis of smartphone applications. In: Proceedings
of the third ACM conference on data and application security
and privacy. ACM

	 59.	 Enck W et al (2014) TaintDroid: an information-flow track-
ing system for realtime privacy monitoring on smart-
phones. ACM Trans Comput Syst (TOCS) 32(2):5. https​://doi.
org/10.1145/26190​91

	 60.	 Yan L-K, Yin H (2012) DroidScope: seamlessly reconstructing the
OS and Dalvik semantic views for dynamic android malware
analysis. In: USENIX security symposium

	 61.	 Kabakus AT, Dogru IA (2018) An in-depth analysis of android
malware using hybrid techniques. Digit Investig 24:25–33.
https​://doi.org/10.1016/j.diin.2018.01.001

	 62.	 Yuan Z, Lu Y, Xue Y (2016) Droiddetector: android malware
characterization and detection using deep learning. Tsin-
ghua Sci Technol 21(1):114–123. https​://doi.org/10.1109/
TST.2016.73992​88

	 63.	 Chen S et al (2016) StormDroid: a streaminglized machine
learning-based system for detecting android malware, pp
377–388. https​://doi.org/10.1145/28978​45.28978​60

	 64.	 Jang J-W et al (2016) Andro-Dumpsys: anti-malware system
based on the similarity of malware creator and malware
centric information. Comput Secur 58:125–138. https​://doi.
org/10.1016/j.cose.2015.12.005

	 65.	 Zhao S et al (2014) Attack tree based android malware detec-
tion with hybrid analysis. In: Trust, security and privacy in com-
puting and communications (TrustCom), pp 380–387. https​://
doi.org/10.1109/trust​com.2014.49

	 66.	 Mas’ud MZ et al (2013) Profiling mobile malware behaviour
through hybrid malware analysis approach. In: 2013 9th inter-
national conference on information assurance and security
(IAS). https​://doi.org/10.1109/ISIAS​.2013.69477​37

	 67.	 Talha KA, Alper DI, Aydin C (2015) APK auditor: permission-
based android malware detection system. Digit Investig 13:1–
14. https​://doi.org/10.1016/j.diin.2015.01.001

	 68.	 Samra AAA, Ghanem OA (2013) Analysis of clustering tech-
nique in android malware detection. In: 2013 seventh inter-
national conference on innovative mobile and internet ser-
vices in ubiquitous computing. IEEE, pp 729–733. https​://doi.
org/10.1109/imis.2013.111

	 69.	 Arp D et al (2014) DREBIN: effective and explainable detection
of android malware in your pocket. In: Ndss

	 70.	 Feizollah A et al (2017) AndroDialysis: analysis of android intent
effectiveness in malware detection. Comput Secur 65:121–134.
https​://doi.org/10.1016/j.cose.2016.11.007

	 71.	 Zhang M et al (2014) Semantics-aware android malware clas-
sification using weighted contextual API dependency graphs.
In: 2014 ACM SIGSAC conference on computer and communi-
cations security, pp 1105–1116. https​://doi.org/10.1145/26602​
67.26603​59

	 72.	 Moghaddam SH, Abbaspour M (2014) Sensitivity analysis of
static features for android malware detection. In: 2014 22nd
Iranian conference on electrical engineering (ICEE). IEEE

	 73.	 Wu D-J et al (2012) Droidmat: android malware detection
through manifest and API calls tracing. In: 2012 seventh Asia
joint conference on information security (Asia JCIS). IEEE

	 74.	 Martín A, Menéndez HD, Camacho D (2016) MOCDroid: multi-
objective evolutionary classifier for android malware detection.

https://github.com/pxb1988/dex2jar
https://bitbucket.org/mstrobel/procyon
http://siis.cse.psu.edu/ded/
http://siis.cse.psu.edu/ded/
https://code.google.com/archive/p/androguard/
https://code.google.com/archive/p/androguard/
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://developer.android.com/studio/test/monkeyrunner/
https://developer.android.com/studio/test/monkeyrunner/
https://github.com/honeynet/droidbot
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat
https://github.com/pjlantz/droidbox
https://github.com/pjlantz/droidbox
https://github.com/RobotiumTech/robotium
https://github.com/RobotiumTech/robotium
https://strace.io/
http://www.tcpdump.org/
https://doi.org/10.1016/j.cose.2017.11.007
https://doi.org/10.1016/j.cose.2017.11.007
https://doi.org/10.1007/s12652-018-0803-6
https://doi.org/10.1007/s10207-017-0363-3
https://doi.org/10.1007/s10207-017-0363-3
https://doi.org/10.1109/tr.2017.2778147
https://doi.org/10.1016/j.cose.2017.11.006
https://doi.org/10.1016/j.cose.2017.11.006
https://doi.org/10.1145/2619091
https://doi.org/10.1145/2619091
https://doi.org/10.1016/j.diin.2018.01.001
https://doi.org/10.1109/TST.2016.7399288
https://doi.org/10.1109/TST.2016.7399288
https://doi.org/10.1145/2897845.2897860
https://doi.org/10.1016/j.cose.2015.12.005
https://doi.org/10.1016/j.cose.2015.12.005
https://doi.org/10.1109/trustcom.2014.49
https://doi.org/10.1109/trustcom.2014.49
https://doi.org/10.1109/ISIAS.2013.6947737
https://doi.org/10.1016/j.diin.2015.01.001
https://doi.org/10.1109/imis.2013.111
https://doi.org/10.1109/imis.2013.111
https://doi.org/10.1016/j.cose.2016.11.007
https://doi.org/10.1145/2660267.2660359
https://doi.org/10.1145/2660267.2660359

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

Soft Comput 21(24):7405–7415. https​://doi.org/10.1007/s0050​
0-016-2283-y

	 75.	 Aafer Y, Du W, Yin H (2013) DroidAPIMiner: mining API-level
features for robust malware detection in android. In: Security
and privacy in communication networks. Springer, Cham

	 76.	 Felt AP et al (2011) Android permissions demystified. In: Pro-
ceedings of the 18th ACM conference on computer and com-
munications security. ACM, Chicago, Illinois, USA, pp 627–638

	 77.	 Sen S, Aysan AI, Clark JA (2018) SAFEDroid: using structural fea-
tures for detecting android malwares. In: Security and privacy
in communication networks. Springer, Cham

	 78.	 Milosevic N, Dehghantanha A, Choo K-KR (2017) Machine
learning aided android malware classification. Comput
Electr Eng 61:266–274. https​://doi.org/10.1016/j.compe​lecen​
g.2017.02.013

	 79.	 Yerima SY, Sezer S (2018) DroidFusion: a novel multilevel classi-
fier fusion approach for android malware detection. IEEE Trans
Cybern. https​://doi.org/10.1109/tcyb.2017.27779​60

	 80.	 Zhang L, Niu Y, Wu X, Wang Z, Yibo X (2013) A3: automatic anal-
ysis of android malware. In: International workshop on cloud
computing and information security

	 81.	 Park W et al (2014) Analyzing and detecting method of android
malware via disassembling and visualization. In: 2014 interna-
tional conference on information and communication technol-
ogy convergence (ICTC). IEEE

	 82.	 Lee J, Lee S, Lee H (2015) Screening smartphone applications
using malware family signatures. Comput Secur 52:234–249.
https​://doi.org/10.1016/j.cose.2015.02.003

	 83.	 Palumbo P et al (2017) A pragmatic android malware detec-
tion procedure. Comput Secur 70:689–701. https​://doi.
org/10.1016/j.cose.2017.07.013

	 84.	 Kwon J et al (2014) Droidgraph: discovering android malware
by analyzing semantic behavior. In: 2014 IEEE conference on
communications and network security (CNS). IEEE

	 85.	 Alam S et al (2017) DroidNative: automating and optimizing
detection of android native code malware variants. Comput
Secur 65:230–246. https​://doi.org/10.1016/j.cose.2016.11.011

	 86.	 Wang C et al (2018) Research on data mining of permissions
mode for android malware detection. Clust Comput. https​://
doi.org/10.1007/s1058​6-018-1904-x

	 87.	 Elish KO et al (2015) Profiling user-trigger dependence for
android malware detection. Comput Secur 49:255–273. https​
://doi.org/10.1016/j.cose.2014.11.001

	 88.	 Brown J, Anwar M, Dozier G (2016) Detection of mobile mal-
ware: an artificial immunity approach, pp 74–80. https​://doi.
org/10.1109/spw.2016.32

	 89.	 Junaid M, Liu D, Kung D (2016) Dexteroid: detecting malicious
behaviors in android apps using reverse-engineered life cycle
models. Comput Secur 59:92–117. https​://doi.org/10.1016/j.
cose.2016.01.008

	 90.	 Pandita R, Xiao X, Yang W, Enck W, Xie T (2013) WHYPER: towards
automating risk assessment of mobile applications. In: USENIX
security symposium

	 91.	 Canfora G et al (2015) Effectiveness of opcode ngrams for
detection of multi family android malware, pp 333–340. https​
://doi.org/10.1109/ares.2015.57

	 92.	 Sokolova K, Perez C, Lemercier M (2017) Android application
classification and anomaly detection with graph-based per-
mission patterns. Decis Support Syst 93:62–76. https​://doi.
org/10.1016/j.dss.2016.09.006

	 93.	 Gibler C et al (2012) AndroidLeaks: automatically detecting
potential privacy leaks in android applications on a large scale.
In: International conference on trust and trustworthy comput-
ing. Springer, Berlin

	 94.	 Moonsamy V, Rong J, Liu S (2014) Mining permission
patterns for contrasting clean and malicious android

applications. Future Gener Comput Syst 36:122–132. https​://
doi.org/10.1016/j.futur​e.2013.09.014

	 95.	 Sanz B et al (2012) On the automatic categorisation of android
applications. In: 2012 IEEE consumer communications and net-
working conference (CCNC). IEEE

	 96.	 Tan M et al (2017) Android malware detection combining fea-
ture correlation and Bayes classification model. In: 2017 IEEE
9th international conference on communication software and
networks (ICCSN). IEEE

	 97.	 Wang C et al (2017) An android malware dynamic detection
method based on service call co-occurrence matrices. Ann
Telecommun 72(9–10):607–615. https​://doi.org/10.1007/s1224​
3-017-0580-9

	 98.	 Chang W-L, Sun H-M, Wu W (2016) An android behavior-based
malware detection method using machine learning. In: 2016
IEEE international conference on signal processing, communi-
cations and computing (ICSPCC). IEEE

	 99.	 Amos B, Turner H, White J (2013) Applying machine learning
classifiers to dynamic android malware detection at scale. In:
2013 9th international wireless communications and mobile
computing conference (IWCMC). IEEE

	100.	 Kumar A et al (2016) Machine learning based malware clas-
sification for android applications using multimodal image
representations. In: 2016 10th international conference on
intelligent systems and control (ISCO)

	101.	 Bakour K, Daş GS, Ünver HM (2017) An intrusion detection
system based on a hybrid Tabu-genetic algorithm. In: 2017
international conference on computer science and engineer-
ing (UBMK). IEEE

	102.	 Shen T et al (2014) Detect android malware variants using
component based topology graph. In: 2014 IEEE 13th inter-
national conference on trust, security and privacy in comput-
ing and communications (TrustCom), pp 406–413. https​://doi.
org/10.1109/trust​com.2014.52

	103.	 Faruki P et al (2015) AndroSimilar: robust signature for detect-
ing variants of android malware. J Inf Secur Appl 22:66–80.
https​://doi.org/10.1016/j.jisa.2014.10.011

	104.	 Grace M et al (2012) RiskRanker: scalable and accurate zero-day
android. In: Proceedings of the 10th international conference
on mobile systems, applications, and services. ACM

	105.	 Crussell J, Gibler C, Chen H (2015) AnDarwin: scalable detec-
tion of android application clones based on semantics. IEEE
Trans Mob Comput 14(10):2007–2019. https​://doi.org/10.1109/
TMC.2014.23812​12

	106.	 Yang X et al (2017) Characterizing malicious android apps by
mining topic-specific data flow signatures. Inf Softw Technol
90:27–39. https​://doi.org/10.1016/j.infso​f.2017.04.007

	107.	 Chumachenko K (2017) Machine learning methods
for malware detection and classification. http://urn.fi/
URN:NBN:fi:amk-20170​31031​55. Accessed 13 Mar 2019

	108.	 Feldman S, Stadther D, Wang B (2014) Manilyzer: automated
android malware detection through manifest analysis, pp
767–772. https​://doi.org/10.1109/mass.2014.65

	109.	 Sheen S, Anitha R, Natarajan V (2015) Android based mal-
ware detection using a multifeature collaborative decision
fusion approach. Neurocomputing 151:905–912. https​://doi.
org/10.1016/j.neuco​m.2014.10.004

	110.	 Fereidooni H et al (2016) ANASTASIA: ANdroid mAlware detec-
tion using STatic analySIs of Applications. In: 2016 8th IFIP
international conference on new technologies, mobility and
security (NTMS). IEEE

	111.	 Ma L et al (2016) Ultra-lightweight malware detection of
android using 2-level machine learning, pp 729–733. https​://
doi.org/10.1109/ICISC​E.2016.161

	112.	 Du Y, Wang J, Li Q (2017) An android malware detec-
tion approach using community structures of weighted

https://doi.org/10.1007/s00500-016-2283-y
https://doi.org/10.1007/s00500-016-2283-y
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://doi.org/10.1109/tcyb.2017.2777960
https://doi.org/10.1016/j.cose.2015.02.003
https://doi.org/10.1016/j.cose.2017.07.013
https://doi.org/10.1016/j.cose.2017.07.013
https://doi.org/10.1016/j.cose.2016.11.011
https://doi.org/10.1007/s10586-018-1904-x
https://doi.org/10.1007/s10586-018-1904-x
https://doi.org/10.1016/j.cose.2014.11.001
https://doi.org/10.1016/j.cose.2014.11.001
https://doi.org/10.1109/spw.2016.32
https://doi.org/10.1109/spw.2016.32
https://doi.org/10.1016/j.cose.2016.01.008
https://doi.org/10.1016/j.cose.2016.01.008
https://doi.org/10.1109/ares.2015.57
https://doi.org/10.1109/ares.2015.57
https://doi.org/10.1016/j.dss.2016.09.006
https://doi.org/10.1016/j.dss.2016.09.006
https://doi.org/10.1016/j.future.2013.09.014
https://doi.org/10.1016/j.future.2013.09.014
https://doi.org/10.1007/s12243-017-0580-9
https://doi.org/10.1007/s12243-017-0580-9
https://doi.org/10.1109/trustcom.2014.52
https://doi.org/10.1109/trustcom.2014.52
https://doi.org/10.1016/j.jisa.2014.10.011
https://doi.org/10.1109/TMC.2014.2381212
https://doi.org/10.1109/TMC.2014.2381212
https://doi.org/10.1016/j.infsof.2017.04.007
http://urn.fi/URN:NBN:fi:amk-201703103155
http://urn.fi/URN:NBN:fi:amk-201703103155
https://doi.org/10.1109/mass.2014.65
https://doi.org/10.1016/j.neucom.2014.10.004
https://doi.org/10.1016/j.neucom.2014.10.004
https://doi.org/10.1109/ICISCE.2016.161
https://doi.org/10.1109/ICISCE.2016.161

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

function call graphs. IEEE Access 5:17478–17486. https​://doi.
org/10.1109/acces​s.2017.27201​60

	113.	 Aung Z, Zaw W (2013) Permission-based android malware
detection. Int J Sci Technol Res 2(3):228–234

	114.	 Verma S, Muttoo SK (2016) An android malware detec-
tion framework-based on permissions and intents. Def Sci J
66(6):618. https​://doi.org/10.14429​/dsj.66.10803​

	115.	 Karbab EB et al (2017) Android malware detection using
deep learning on API method sequences. arXiv preprint arXiv​
:1712.08996​. https​://arxiv​.org/abs/1712.08996​v1

	116.	 Hou S et al (2016) Deep4maldroid: A deep learning framework
for android malware detection based on Linux kernel system
call graphs. In: IEEE/WIC/ACM international conference on web
intelligence workshops (WIW). IEEE

	117.	 Nix R, Zhang J (2017) Classification of android apps and mal-
ware using deep neural networks. In: 2017 international joint
conference on neural networks (IJCNN). IEEE

	118.	 Tong F, Yan Z (2017) A hybrid approach of mobile malware
detection in android. J Parallel Distrib Comput 103:22–31. https​
://doi.org/10.1016/j.jpdc.2016.10.012

	119.	 Yerima SY, Muttik I, Sezer S (2015) High accuracy android
malware detection using ensemble learning. IET Inf Secur
9(6):313–320. https​://doi.org/10.1049/iet-ifs.2014.0099

	120.	 Vergara JR, Estévez PA (2013) A review of feature selection
methods based on mutual information. Neural Comput Appl
24(1):175–186. https​://doi.org/10.1007/s0052​1-013-1368-0

	121.	 Wang X et al (2017) Characterizing android apps’ behav-
ior for effective detection of malapps at large scale. Future
Gener Comput Syst 75:30–45. https​://doi.org/10.1016/j.futur​
e.2017.04.041

	122.	 Omer Fadl Elssied N, Ibrahim O, Hamza Osman A (2014) A novel
feature selection based on one-way ANOVA F-test for e-mail
spam classification. Res J Appl Sci Eng Technol 7(3):625–638.
https​://doi.org/10.19026​/rjase​t.7.299

	123.	 Coronado-De-Alba LD, Rodríguez-Mota A, Escamilla-Ambro-
sio PJ (2016) Feature selection and ensemble of classifiers for
android malware detection. In: 2016 8th IEEE Latin-American
conference on communications (LATINCOM). IEEE

	124.	 Rosario SF, Thangadurai K (2015) RELIEF: feature selection
approach. Int J Innov Res Dev 4(11):219

	125.	 Ng DV, Hwang J-IG (2014) Android malware detection using
the dendritic cell algorithm. In: 2014 international conference
on machine learning and cybernetics (ICMLC). IEEE

	126.	 Wu S et al (2016) Effective detection of android malware based
on the usage of data flow APIs and machine learning. Inf Softw
Technol 75:17–25. https​://doi.org/10.1016/j.infso​f.2016.03.004

	127.	 Spreitzenbarth M et al (2014) Mobile-Sandbox: combining
static and dynamic analysis with machine-learning techniques.
Int J Inf Secur. https​://doi.org/10.1007/s1020​7-014-0250-0

	128.	 Idrees F et al (2017) PIndroid: a novel android malware detec-
tion system using ensemble learning methods. Comput Secur
68:36–46. https​://doi.org/10.1016/j.cose.2017.03.011

	129.	 Mariconti E et al (2016) Mamadroid: detecting android malware
by building markov chains of behavioral models. arXiv preprint
arXiv​:1612.04433​. https​://arxiv​.org/abs/1612.04433​v3

	130.	 Zhou Y, Jiang X (2012) Dissecting android malware: charac-
terization and evolution, pp 95–109. https​://doi.org/10.1109/
sp.2012.16

	131.	 Zheng M, Lee PP, Lui JC (2012) ADAM: an automatic and exten-
sible platform to stress test android anti-virus systems. In: Inter-
national conference on detection of intrusions and malware,
and vulnerability assessment. Springer, Berlin

	132.	 Yerima SY, McWilliams G, Sezer S (2014) Analysis of Bayes-
ian classification-based approaches for android malware
detection. IET Inf Secur 8(1):25–36. https​://doi.org/10.1049/
iet-ifs.2013.0095

	133.	 Faruki P et al (2016) Android code protection via obfuscation
techniques: past, present and future directions. arXiv preprint
arXiv​:1611.10231​. https​://arxiv​.org/abs/1611.10231​v1

	134.	 Maiorca D et al (2015) Stealth attacks: an extended insight into
the obfuscation effects on android malware. Comput Secur
51:16–31. https​://doi.org/10.1016/j.cose.2015.02.007

	135.	 Karlo-Mravunac (2017). https​://sgros​-stude​nts.blogs​pot.com/
searc​h/label​/obfus​catio​n. Accessed 18 July 2018

	136.	 Mavrogiannopoulos N, Kisserli N, Preneel B (2011) A taxon-
omy of self-modifying code for obfuscation. Comput Secur
30(8):679–691. https​://doi.org/10.1016/j.cose.2011.08.007

	137.	 Rastogi V, Chen Y, Jiang X (2013) DroidChameleon: evaluating
android anti-malware against transformation attacks. In: Pro-
ceedings of the 8th ACM SIGSAC symposium on information,
computer and communications security. ACM, Hangzhou, pp
329–334

	138.	 Lantz P, Johansson B (2015) Towards bridging the gap between
Dalvik bytecode and native code during static analysis of
android applications. In: 2015 international wireless commu-
nications and mobile computing conference (IWCMC). IEEE

	139.	 Spreitzenbarth M et al (2013) Mobile-sandbox: having a deeper
look into android applications. In: Proceedings of the 28th
annual ACM symposium on applied computing. ACM, Coim-
bra, pp 1808–1815

	140.	 Glodek W, Harang R (2013) Rapid permissions-based detection
and analysis of mobile malware using random decision forests,
pp 980–985. https​://doi.org/10.1109/milco​m.2013.170

	141.	 Zhou Y et al (2012) Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets. In:
NDSS, vol 25

	142.	 Zheng M, Sun M, Lui JCS (2014) DroidTrace: a ptrace based
android dynamic analysis system with forward execution
capability. In: 2014 international wireless communications and
mobile computing conference (IWCMC)

	143.	 Hu W et al (2014) Migdroid: detecting app-repackaging android
malware via method invocation graph. In: 2014 23rd interna-
tional conference on computer communication and networks
(ICCCN). IEEE

	144.	 Zhou W et al (2012) Detecting repackaged smartphone appli-
cations in third-party android marketplaces. In: Proceedings of
the second ACM conference on data and application security
and privacy. ACM

	145.	 Alzaylaee MK, Yerima SY, Sezer S (2017) Improving dynamic
analysis of android apps using hybrid test input generation. In:
2017 international conference on cyber security and protection
of digital services (cyber security). IEEE

	146.	 Vidas T, Christin N (2014) Evading android runtime analysis via
sandbox detection. In: Proceedings of the 9th ACM symposium
on information, computer and communications security-ASIA
CCS ‘14, pp 447–458

	147.	 Alzaylaee MK, Yerima SY, Sezer S (2016) DynaLog: an automated
dynamic analysis framework for characterizing android appli-
cations. In: 2016 international conference on cyber security and
protection of digital services (cyber security). IEEE

	148.	 Li J et al (2014) Research of android malware detection based
on network traffic monitoring. In: 2014 IEEE 9th conference on
industrial electronics and applications (ICIEA). IEEE

	149.	 Tam K et al (2015) CopperDroid: automatic reconstruction of
android malware behaviors. In: NDSS

	150.	 Bugiel S et al (2011) XManDroid: a new android evolution to
mitigate privilege escalation attacks. Technical report TR-2011-
04, Technische Universit, Darmstadt

	151.	 Russello G et al (2011) Yaase: yet another android security
extension. In: 2011 IEEE third international conference on
privacy, security, risk and trust (PASSAT) and 2011 IEEE third
international conference on social computing (SocialCom). IEEE

https://doi.org/10.1109/access.2017.2720160
https://doi.org/10.1109/access.2017.2720160
https://doi.org/10.14429/dsj.66.10803
http://arxiv.org/abs/1712.08996
http://arxiv.org/abs/1712.08996
https://arxiv.org/abs/1712.08996v1
https://doi.org/10.1016/j.jpdc.2016.10.012
https://doi.org/10.1016/j.jpdc.2016.10.012
https://doi.org/10.1049/iet-ifs.2014.0099
https://doi.org/10.1007/s00521-013-1368-0
https://doi.org/10.1016/j.future.2017.04.041
https://doi.org/10.1016/j.future.2017.04.041
https://doi.org/10.19026/rjaset.7.299
https://doi.org/10.1016/j.infsof.2016.03.004
https://doi.org/10.1007/s10207-014-0250-0
https://doi.org/10.1016/j.cose.2017.03.011
http://arxiv.org/abs/1612.04433
https://arxiv.org/abs/1612.04433v3
https://doi.org/10.1109/sp.2012.16
https://doi.org/10.1109/sp.2012.16
https://doi.org/10.1049/iet-ifs.2013.0095
https://doi.org/10.1049/iet-ifs.2013.0095
http://arxiv.org/abs/1611.10231
https://arxiv.org/abs/1611.10231v1
https://doi.org/10.1016/j.cose.2015.02.007
https://sgros-students.blogspot.com/search/label/obfuscation
https://sgros-students.blogspot.com/search/label/obfuscation
https://doi.org/10.1016/j.cose.2011.08.007
https://doi.org/10.1109/milcom.2013.170

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

	152.	 Ongtang M et al (2012) Semantically rich application-centric
security in android. Secur Commun Netw 5(6):658–673. https​
://doi.org/10.1002/sec.360

	153.	 Rastogi V, Chen Y, Jiang X (2013) Droidchameleon: evaluating
android anti-malware against transformation attacks. In: Pro-
ceedings of the 8th ACM SIGSAC symposium on information,
computer and communications security. ACM

	154.	 Huang H et al (2013) A framework for evaluating mobile app
repackaging detection algorithms. In: International confer-
ence on trust and trustworthy computing. Springer, Berlin

	155.	 Xue L et al (2017) Adaptive unpacking of android apps. In:
IEEE/ACM 39th international conference, pp 358–369. https​
://doi.org/10.1109/icse.2017.40

	156.	 Li B et al (2018) AppSpear: automating the hidden-code
extraction and reassembling of packed android mal-
ware. J Syst Softw 140:3–16. https​://doi.org/10.1016/j.
jss.2018.02.040

	157.	 Amalfitano D et al (2012) Using GUI ripping for automated
testing of android applications. In: Proceedings of the 27th
IEEE/ACM international conference on automated software
engineering. ACM

	158.	 Machiry A, Tahiliani R, Naik M (2013) Dynodroid: an input
generation system for android apps. In: Proceedings of the
2013 9th joint meeting on foundations of software engineer-
ing. ACM

	159.	 Spreitzenbarth M et al (2013) Mobile-sandbox: having a
deeper look into android applications, pp 1808–1815

	160.	 Zhang Y et al (2019) SaaS: a situational awareness and anal-
ysis system for massive android malware detection. Future
Gener Comput Syst 95:548–559

	161.	 Zhang L, Thing VL, Cheng Y (2019) A scalable and extensible
framework for android malware detection and family attribu-
tion. Comput Secur 80:120–133

	162.	 Martín I, Hernández JA (2019) CloneSpot: fast detection of
android repackages. Future Gener Comput Syst 94:740–748

	163.	 Fan M et al (2018) Android malware familial classification
and representative sample selection via frequent subgraph
analysis. IEEE Trans Inf Forensics Secur 13(8):1890–1905. https​
://doi.org/10.1109/tifs.2018.28068​91

	164.	 Papadopoulos H et al (2018) Android malware detection with
unbiased confidence guarantees. Neurocomputing 280:3–12.
https​://doi.org/10.1016/j.neuco​m.2017.08.072

	165.	 Jha AK, Lee WJ (2018) An empirical study of collaborative
model and its security risk in android. J Syst Softw 137:550–
562. https​://doi.org/10.1016/j.jss.2017.07.042

	166.	 Li J et al (2018) Significant permission identification for
machine-learning-based android malware detection. IEEE
Trans Ind Inform 14(7):3216–3225

	167.	 Zhao C et al (2018) Quick and accurate android malware
detection based on sensitive APIs. In: 2018 IEEE international
conference on smart internet of things (SmartIoT). IEEE

	168.	 Şahın DÖ et al (2018) New results on permission based static
analysis for android malware. In: 2018 6th international sym-
posium on digital forensic and security (ISDFS). IEEE

	169.	 Jin Y et al (2018) Android malware detector exploiting convo-
lutional neural network and adaptive classifier selection. In:
2018 IEEE 42nd annual computer software and applications
conference (COMPSAC). IEEE

	170.	 Hasegawa C, Iyatomi H (2018) One-dimensional convo-
lutional neural networks for android malware detection.
In:2018 IEEE 14th international colloquium on signal process-
ing & its applications (CSPA). IEEE

	171.	 Koli J (2018) RanDroid: android malware detection using ran-
dom machine learning classifiers. In: 2018 technologies for
smart-city energy security and power (ICSESP). IEEE

	172.	 Riasat R et al (2018) Onamd: an online android malware detec-
tion approach. In: 2018 international conference on machine
learning and cybernetics (ICMLC). IEEE

	173.	 Jung J et al (2018) Android malware detection based on useful
API calls and machine learning. In: 2018 IEEE first international
conference on artificial intelligence and knowledge engineer-
ing (AIKE). IEEE

	174.	 Arshad S et al (2018) SAMADroid: a novel 3-level hybrid mal-
ware detection model for android operating system. IEEE
Access 6:4321–4339

	175.	 Arora A, Peddoju SK (2018) NTPDroid: a hybrid android mal-
ware detector using network traffic and system permissions.
In: 2018 17th IEEE international conference on trust, security
and privacy in computing and communications/12th IEEE
international conference on big data science and engineering
(TrustCom/BigDataSE). IEEE

	176.	 Rehman Z-U et al (2017) Machine learning-assisted signature
and heuristic-based detection of malwares in android devices.
Comput Electr Eng. https​://doi.org/10.1016/j.compe​lecen​
g.2017.11.028

	177.	 Martinelli F, Marulli F, Mercaldo F (2017) Evaluating convolu-
tional neural network for effective mobile malware detection.
Procedia Comput Sci 112:2372–2381

	178.	 Liang H, Song Y, Xiao D (2017) An end-to-end model for android
malware detection. In: 2017 IEEE international conference on
intelligence and security informatics (ISI). IEEE

	179.	 Su M-Y, Chang J-Y, Fung K-T (2017) Machine learning on merg-
ing static and dynamic features to identify malicious mobile
apps. In: 2017 ninth international conference on ubiquitous
and future networks (ICUFN). IEEE

	180.	 Narayanan A et al (2017) Context-aware, adaptive, and scalable
android malware detection through online learning. IEEE Trans
Emerg Top Comput Intell 1(3):157–175

	181.	 Li D et al (2017) FgDetector: fine-grained android malware
detection. In: 2017 IEEE second international conference on
data science in cyberspace (DSC). IEEE

	182.	 Mohsen F et al (2017) Detecting android malwares by mining
statically registered broadcast receivers. In: 2017 IEEE 3rd inter-
national conference on collaboration and internet computing
(CIC). IEEE

	183.	 Zhu D et al (2017) DeepFlow: deep learning-based malware
detection by mining Android application for abnormal usage
of sensitive data. In: 2017 IEEE symposium on computers and
communications (ISCC). IEEE

	184.	 Fan M et al (2017) Dapasa: detecting android piggybacked apps
through sensitive subgraph analysis. IEEE Trans Inf Forensics
Secur 12(8):1772–1785

	185.	 Goyal R et al (2016) SafeDroid: a distributed malware detec-
tion service for android. , pp 59–66. https​://doi.org/10.1109/
SOCA.2016.14

	186.	 Song J et al (2016) An integrated static detection and analysis
framework for android. Pervasive Mob Comput 32:15–25. https​
://doi.org/10.1016/j.pmcj.2016.03.003

	187.	 Narayanan A et al (2016) Adaptive and scalable android mal-
ware detection through online learning. In: 2016 international
joint conference on neural networks (IJCNN). IEEE

	188.	 Chen W et al (2016) More semantics more robust, pp 147–158.
https​://doi.org/10.1145/29399​18.29399​31

	189.	 Ju S-H, Seo H-S, Kwak J (2016) Research on android malware
permission pattern using permission monitoring system. Mul-
timed Tools Appl 75(22):14807–14817. https​://doi.org/10.1007/
s1104​2-016-3273-x

	190.	 Wang K, Song T, Liang A (2016) Mmda: metadata based mal-
ware detection on android. In: 2016 12th international confer-
ence on computational intelligence and security (CIS). IEEE

https://doi.org/10.1002/sec.360
https://doi.org/10.1002/sec.360
https://doi.org/10.1109/icse.2017.40
https://doi.org/10.1109/icse.2017.40
https://doi.org/10.1016/j.jss.2018.02.040
https://doi.org/10.1016/j.jss.2018.02.040
https://doi.org/10.1109/tifs.2018.2806891
https://doi.org/10.1109/tifs.2018.2806891
https://doi.org/10.1016/j.neucom.2017.08.072
https://doi.org/10.1016/j.jss.2017.07.042
https://doi.org/10.1016/j.compeleceng.2017.11.028
https://doi.org/10.1016/j.compeleceng.2017.11.028
https://doi.org/10.1109/SOCA.2016.14
https://doi.org/10.1109/SOCA.2016.14
https://doi.org/10.1016/j.pmcj.2016.03.003
https://doi.org/10.1016/j.pmcj.2016.03.003
https://doi.org/10.1145/2939918.2939931
https://doi.org/10.1007/s11042-016-3273-x
https://doi.org/10.1007/s11042-016-3273-x

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x	 Review Paper

	191.	 Wang Z et al (2016) DroidDeepLearner: identifying android
malware using deep learning. In: 2016 IEEE 37th Sarnoff sym-
posium. IEEE

	192.	 Zhang X et al (2016) A novel android malware detection
method based on markov blanket. In: IEEE international
conference on data science in cyberspace (DSC). IEEE

	193.	 Yang M, Wen Q (2016) Detecting android malware with
intensive feature engineering. In: 2016 7th IEEE international
conference on software engineering and service science
(ICSESS). IEEE

	194.	 Martín A, Menéndez HD, Camacho D (2016) String-based
malware detection for android environments. In: Interna-
tional symposium on intelligent and distributed computing.
Springer, Berlin

	195.	 Su X et al (2016) A deep learning approach to android mal-
ware feature learning and detection. In: 2016 IEEE Trustcom/
BigDataSE/I SPA. IEEE

	196.	 Wang Z et al (2016) DroidChain: a novel android malware
detection method based on behavior chains. Pervasive Mob
Comput 32:3–14

	197.	 Karbab EB, Debbabi M, Mouheb D (2016) Fingerprinting
android packaging: generating DNAs for malware detection.
Digit Investig 18:S33–S45

	198.	 Zhang X, Jin Z (2016) A new semantics-based android mal-
ware detection. In:2016 2nd IEEE international conference on
computer and communications (ICCC). IEEE

	199.	 Morales-Ortega S et al (2016) Native malware detection in
smartphones with android os using static analysis, feature
selection and ensemble classifiers. In: 2016 11th interna-
tional conference on malicious and unwanted software
(MALWARE). IEEE

	200.	 Li Q, Li X (2015) Android malware detection based on
static analysis of characteristic tree, pp 84–91. https​://doi.
org/10.1109/cyber​c.2015.88

	201.	 Rosmansyah Y, Dabarsyah B (2015) Malware detection on
android smartphones using API class and machine learning.
In: 2015 International Conference on Electrical Engineering
and Informatics (ICEEI). IEEE

	202.	 Li W, Ge J, Dai G (2015) Detecting malware for android plat-
form: an SVM-based approach. In: 2015 IEEE 2nd interna-
tional conference on cyber security and cloud computing
(CSCloud). IEEE

	203.	 Gordon MI et al (2015) Information-flow analysis of android
applications in DroidSafe. https​://doi.org/10.14722​/
ndss.2015.23089​

	204.	 Damshenas M et al (2015) M0Droid: an android behavioral-
based malware detection model. J Inf Priv Secur 11(3):141–157.
https​://doi.org/10.1080/15536​548.2015.10735​10

	205.	 Almin SB, Chatterjee M (2015) A novel approach to detect
android malware. Procedia Comput Sci 45:407–417. https​://
doi.org/10.1016/j.procs​.2015.03.170

	206.	 Lindorfer M, Neugschwandtner M, Platzer C (2015) Marvin:
efficient and comprehensive mobile app classification through
static and dynamic analysis. In: 2015 IEEE 39th annual com-
puter software and applications conference (COMPSAC). IEEE

	207.	 Bierma M et al (2014) Andlantis: large-scale android dynamic
analysis. arXiv preprint arXiv​:1410.7751. https​://arxiv​.org/
abs/1410.7751v​1

	208.	 Adebayo OS, AbdulAziz N (2014) Android malware classifica-
tion using static code analysis and a priori algorithm improved
with particle swarm optimization. In: 2014 fourth world con-
gress on information and communication technologies (WICT).
IEEE

	209.	 Liang S et al (2014) An effective online scheme for detecting
android malware. In: 2014 23rd international conference on
computer communication and networks (ICCCN). IEEE

	210.	 Lagerspetz E et al (2014) MDoctor: a mobile malware prog-
nosis application, pp 201–206. https​://doi.org/10.1109/icdcs​
w.2014.36

	211.	 Merlo A, Migliardi M, Fontanelli P (2014) On energy-based pro-
filing of malware in android. In: 2014 international conference
on high performance computing & simulation (HPCS)

	212.	 Suarez-Tangil G et al (2014) Dendroid: a text mining approach
to analyzing and classifying code structures in android mal-
ware families. Expert Syst Appl 41(4):1104–1117. https​://doi.
org/10.1016/j.eswa.2013.07.106

	213.	 Hsiao SW et al (2014) PasDroid: real-time security enhancement
for android, pp 229–235. https​://doi.org/10.1109/imis.2014.28

	214.	 Yerima SY, Sezer S, Muttik I (2014) Android malware detection
using parallel machine learning classifiers. In: 2014 eighth
international conference on next generation mobile apps,
services and technologies (NGMAST). IEEE

	215.	 Feng Y et al (2014) Apposcopy: semantics-based detection of
android malware through static analysis. In: Proceedings of the
22nd ACM SIGSOFT international symposium on foundations
of software engineering. ACM

	216.	 Xiaoyan Z, Juan F, Xiujuan W (2014) Android malware detection
based on permissions. https​://doi.org/10.1049/cp.2014.0605

	217.	 Xiangyu J (2014) Android malware detection through permis-
sion and package. In: 2014 international conference on wavelet
analysis and pattern recognition

	218.	 Liang S, Du X (2014) Permission-combination-based scheme for
android mobile malware detection. In: 2014 IEEE international
conference on communications (ICC). IEEE

	219.	 Idrees F, Rajarajan M (2014) Investigating the android intents
and permissions for malware detection. In: 2014 IEEE 10th
international conference on wireless and mobile computing,
networking and communications (WiMob). IEEE

	220.	 Raphael R, Vinod P, Omman B (2014) X-ANOVA and X-Utest
features for android malware analysis. In: 2014 international
conference on advances in computing, communications and
informatics (ICACCI). IEEE

	221.	 Wolfe B, Elish KO, Yao DD (2014) Comprehensive behavior pro-
filing for proactive android malware detection. In: international
conference on information security. Springer, Berlin

	222.	 Seo S-H et al (2014) Detecting mobile malware threats to
homeland security through static analysis. J Netw Comput
Appl 38:43–53

	223.	 Deepa K, Radhamani G, Vinod P (2015) Investigation of fea-
ture selection methods for android malware analysis. Procedia
Comput Sci 46:841–848

	224.	 Shabtai A et al (2014) Mobile malware detection through
analysis of deviations in application network behavior. Comput
Secur 43:1–18. https​://doi.org/10.1016/j.cose.2014.02.009

	225.	 Yerima SY et al (2013) A new android malware detection
approach using Bayesian classification. In: 2013 IEEE 27th inter-
national conference on advanced information networking and
applications (AINA)

	226.	 Tenenboim-Chekina L et al (2013) Detecting application
update attack on mobile devices through network features.
In: 2013 IEEE conference on computer communications work-
shops (INFOCOM WKSHPS). IEEE

	227.	 Karami M et al (2013) Behavioral analysis of android applica-
tions using automated instrumentation, pp 182–187. https​://
doi.org/10.1109/sere-c.2013.35

	228.	 Vasquez S, Simmonds J (2013) Mobile application monitor-
ing. In: 2013 32nd international conference of the Chilean
computer science society, pp 30–32. https​://doi.org/10.1109/
sccc.2013.16

	229.	 Backes M et al (2014) AppGuard—fine-grained policy enforce-
ment for untrusted android applications. In: Revised selected
papers of the 8th international workshop on data privacy

https://doi.org/10.1109/cyberc.2015.88
https://doi.org/10.1109/cyberc.2015.88
https://doi.org/10.14722/ndss.2015.23089
https://doi.org/10.14722/ndss.2015.23089
https://doi.org/10.1080/15536548.2015.1073510
https://doi.org/10.1016/j.procs.2015.03.170
https://doi.org/10.1016/j.procs.2015.03.170
http://arxiv.org/abs/1410.7751
https://arxiv.org/abs/1410.7751v1
https://arxiv.org/abs/1410.7751v1
https://doi.org/10.1109/icdcsw.2014.36
https://doi.org/10.1109/icdcsw.2014.36
https://doi.org/10.1016/j.eswa.2013.07.106
https://doi.org/10.1016/j.eswa.2013.07.106
https://doi.org/10.1109/imis.2014.28
https://doi.org/10.1049/cp.2014.0605
https://doi.org/10.1016/j.cose.2014.02.009
https://doi.org/10.1109/sere-c.2013.35
https://doi.org/10.1109/sere-c.2013.35
https://doi.org/10.1109/sccc.2013.16
https://doi.org/10.1109/sccc.2013.16

Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1120 | https://doi.org/10.1007/s42452-019-1124-x

management and autonomous spontaneous security, vol 8247.
Springer, Berlin, pp 213–231

	230.	 Peiravian N, Zhu X (2013) Machine learning for android mal-
ware detection using permission and API calls, pp 300–305.
https​://doi.org/10.1109/ictai​.2013.53

	231.	 Lu Y et al (2013) Android malware detection technology based
on improved Bayesian classification, pp 1338–1341. https​://doi.
org/10.1109/imccc​.2013.297

	232.	 Wei Y et al (2013) On behavior-based detection of malware on
android platform. In: 2013 IEEE global communications confer-
ence (GLOBECOM). IEEE

	233.	 Alam MS, Vuong ST (2013) Random forest classification for
detecting android malware. In: IEEE international conference
on green computing and communications (GreenCom), 2013
IEEE internet of things (iThings/CPSCom), and IEEE cyber, physi-
cal and social computing. IEEE

	234.	 Ham H-S, Choi M-J (2013) Analysis of android malware detec-
tion performance using machine learning classifiers. In: 2013
international conference on ICT convergence (ICTC). IEEE

	235.	 Zhang Y et al (2013) Vetting undesirable behaviors in android
apps with permission use analysis. In: Proceedings of the 2013
ACM SIGSAC conference on computer & communications secu-
rity. ACM

	236.	 Zheng M, Sun M, Lui J (2013) Droidanalytics: a signature based
analytic system to collect, extract, analyze and associate
android malware. arXiv preprint arXiv​:1302.7212

	237.	 Eder T et al (2013) ANANAS—a framework for analyzing
android applications. In: 2013 international conference on
availability, reliability and security, pp 711–719

	238.	 Sanz B et al (2013) Puma: permission usage to detect malware
in android. In: International joint conference CISIS’12-ICEUTE
12-SOCO 12 special sessions. Springer, Berlin

	239.	 Zheng C et al (2012) SmartDroid: an automatic system for
revealing UI-based trigger conditions in android applications.
In: Proceedings of the second ACM workshop on security and
privacy in smartphones and mobile devices. ACM, Raleigh, pp
93–104

	240.	 Wei X et al (2012) ProfileDroid: multi-layer profiling of android
applications. In: 18th annual international conference on
mobile computing and networking. ACM

	241.	 Wei X et al (2012) Permission evolution in the android eco-
system. In: Proceedings of the 28th annual computer security
applications conference. ACM

	242.	 Dini G et al (2012) MADAM: a multi-level anomaly detector for
android malware. In: International conference on mathemati-
cal methods, models, and architectures for computer network
security. Springer, Berlin

	243.	 Sahs J, Khan L (2012) A machine learning approach to android
malware detection. In: 2012 European intelligence and security
informatics conference (EISIC). IEEE

	244.	 Yang Z, Yang M (2012) Leakminer: detect information leakage
on android with static taint analysis. In: 2012 third world con-
gress on software engineering (WCSE). IEEE

	245.	 Gascon H et al (2013) Structural detection of android malware
using embedded call graphs. In: Proceedings of the 2013 ACM
workshop on artificial intelligence and security. ACM

	246.	 Su X, Chuah M, Tan G (2012) Smartphone dual defense protec-
tion framework: detecting malicious applications in android
markets. In: 2012 8th international conference on mobile ad
hoc and sensor networks (MSN), pp 153–160

	247.	 Burguera I, Zurutuza U, Nadjm-Tehrani S (2011) Crowdroid:
behavior-based malware detection system for android. In:
Proceedings of the 1st ACM workshop on security and privacy
in smartphones and mobile devices. ACM

	248.	 Chin E et al (2011) Analyzing inter-application communication
in android. In: Proceedings of the 9th international conference
on mobile systems, applications, and services. ACM, Bethesda,
Maryland, USA, pp 239–252

	249.	 Isohara T, Takemori K, Kubota A (2011) Kernel-based behav-
ior analysis for android malware detection. In: 2011 seventh
international conference on computational intelligence and
security, pp 1011–1015

	250.	 Nauman M, Khan S, Zhang X (2010) Apex: extending android
permission model and enforcement with user-defined runt-
ime constraints. In: Proceedings of the 5th ACM symposium
on information, computer and communications security. ACM

	251.	 Ongtang M, Butler K, McDaniel P (2010) Porscha: policy ori-
ented secure content handling in android. In: Proceedings of
the 26th annual computer security applications conference.
ACM

	252.	 Conti M, Nguyen VTN, Crispo B (2011) CRePE: context-related
policy enforcement for android, vol 6531, pp 331–345. https​://
doi.org/10.1007/978-3-642-18178​-8_29

	253.	 Portokalidis G et al (2010) Paranoid android: versatile protec-
tion for smartphones. In: Proceedings of the 26th annual com-
puter security applications conference. ACM

	254.	 Barrera D et al (2010) A methodology for empirical analysis
of permission-based security models and its application to
android, pp 73–84

	255.	 Blasing T et al (2010) An android application sandbox system
for suspicious software detection. In: 2010 5th international
conference on malicious and unwanted software (MALWARE
2010). IEEE

	256.	 Shabtai A, Fledel Y, Elovici Y (2010) Automated static code
analysis for classifying android applications using machine
learning. In: 2010 international conference on computational
intelligence and security, pp 329–333

	257.	 Enck W, Ongtang M, McDaniel P (2009) On lightweight mobile
phone application certification. In: Proceedings of the 16th
ACM conference on computer And communications security.
ACM, Chicago, Illinois, USA, pp 235–245

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ictai.2013.53
https://doi.org/10.1109/imccc.2013.297
https://doi.org/10.1109/imccc.2013.297
http://arxiv.org/abs/1302.7212
https://doi.org/10.1007/978-3-642-18178-8_29
https://doi.org/10.1007/978-3-642-18178-8_29

	The Android malware detection systems between hope and reality
	Abstract
	1 Introduction
	1.1 Related reviews
	1.2 Motivations and goal

	2 Android background
	2.1 Android application
	2.2 APK archive architecture
	2.2.1 AndroidManifest.xml
	2.2.2 Classes.dex
	2.2.3 Resources.arsc
	2.2.4 Libfolder
	2.2.5 Assetsfolder
	2.2.6 Resfolder
	2.2.7 META-INFfolder

	2.3 Android’s security mechanisms
	2.3.1 Permission framework
	2.3.2 Sandboxing
	2.3.3 Application signing

	3 Research methodology
	3.1 Search criteria
	3.2 Papers selection criteria

	4 Proposed taxonomy
	4.1 Behavior analysis framewoks
	4.1.1 Used techniques phases based taxonomy
	4.1.1.1 Pre-processing phase based taxonomy
	4.1.1.2 Features extraction phase based
	4.1.1.3 Detection phase
	4.1.1.4 Feature selection phase

	4.1.2 Used evaluation dataset based taxonomy
	4.1.2.1 Benign dataset
	4.1.2.2 Malicious dataset

	4.1.3 Challenges’ countermeasure-based taxonomy
	4.1.3.1 Static analysis challenges
	4.1.3.2 Dynamic analysis challenges

	4.2 Dynamic analysis environments
	4.3 Policy enforcement frameworks
	4.4 Code packerunpacker tools
	4.5 User interface triggering tools

	5 The proposed Schematic Review Model
	6 Decision and future works areas
	6.1 Static analysis
	6.1.1 Native code and bytecode analysis
	6.1.2 Tackle obfuscation techniques

	6.2 Dynamic analysis
	6.2.1 User interface triggers
	6.2.2 Counter anti-emulator technologies
	6.2.3 Time complexity

	7 Conclusions
	References

