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Abstract: In the present paper, we introduce a new form of generalized Rayleigh distribution called the Alpha
Power generalized Rayleigh (APGR) distribution by following the idea of extension of the distribution families
with the Alpha Power transformation. The introduced distribution has the more general form than both the
Rayleigh and generalized Rayleigh distributions and provides a better fit than the Rayleigh and generalized
Rayleigh distributions for more various forms of the data sets. In the paper, we also obtain explicit forms of
some important statistical characteristics of the APGR distribution such as hazard function, survival function,
mode, moments, characteristic function, Shannon and Rényi entropies, stress-strength probability, Lorenz
and Bonferroni curves and order statistics. The statistical inference problem for the APGR distribution is
investigated by using the maximum likelihood and least-square methods. The estimation performances of
the obtained estimators are compared based on the bias and mean square error criteria by a conducted Monte-
Carlo simulation on small, moderate and large sample sizes. Finally, a real data analysis is given to show how
the proposed model works in practice.

Keywords: Alpha power transformation; Maximum likelihood estimate; Least-square estimate; Shannon
entropy; Generalized Rayleigh distribution.
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1 Introduction

The famous distribution families have been successfully used in modeling real-world data sets, until recently.
However, it is well known that the performances of these distributions in the modeling of complex real-
world data sets are not always at the desired level. In recent years, a number of researchers who take into
account this situation have focused on introducing the flexible distribution families in order to the modeling
of data sets in a wide variety of complex structures and have made several breakthroughs by giving various
continuous distribution generating methods, especially in lifetime distributions. These distribution produce
methods lay out a new distribution taking a baseline distribution. The baseline distributions are always a
special case of the newly obtained distribution. Hence, the produced distribution has the characteristics of the
baseline distribution and provides better data fit than the baseline distribution. There are numerous papers in
the literature that create a new distribution using a baseline distribution and draw attention to its advantages.
We refer readers to [1-5] for further information on generating a new distribution family by using a baseline
distribution.
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The Rayleigh distribution, which has only a shape parameter, was originally introduced by a study
of Rayleigh on a problem of acoustic. The distribution has a strong modeling ability of positive valued
and skewed data obtained from many fields such as engineering, biology, life sciences, reliability and etc.
The Rayleigh distribution is a distribution related to Gamma, Weibull, Exponential and Rice distributions.
However, it has a disadvantage since the distribution has only a single shape parameter in which plays
a crucial role in describing the various behaviors of the distribution. Fortunately, to overcome this disad-
vantage of Rayleigh distribution, there are many generalizations of the distribution such as generalized
Rayleigh distribution [6], transmuted Rayleigh distribution [7], Weibull Rayleigh distribution [8], inverted
exponentiated Rayleigh distribution [9] and the slashed exponentiated Rayleigh distribution [10]. The gener-
alized Rayleigh distribution is the most widely used among these generalizations. The generalized Rayleigh
distribution has also some important generalizations recently introduced to achieve optimal data fit, such
as the Kumaraswamy generalized Rayleigh [11], the beta generalized Rayleigh [12], the slashed generalized
Rayleigh [13] and the Marshall-Olkin extended generalized Rayleigh [14]. In the literature, there are also many
published papers on the estimation of the parameters of Rayleigh and generalized Rayleigh distributions for
the various data types, see [15-24].

The main motivation of this paper is to introduce a more flexible lifetime distribution than the Rayleigh
and generalized Rayleigh distribution to be used for the modeling of data sets in wide variety structures. In
the aim of this context, in the study, a new three-parameter family of Rayleigh distribution which is named
alpha power generalized Rayleigh distribution (APGR) is derived using the alpha power transform (APT)
method recently introduced by Mahdavi and Kundu [5]. Both Rayleigh and generalized Rayleigh distributions
are the special cases of APGR distribution. Therefore, APGR distribution has more data modeling capability
than the Rayleigh and generalized Rayleigh. Further, the APGR distribution is an important alternative to
famous distributions like Gamma, Weibull, and exponential for modeling the data observed from industrial
and physical phenomena.

The rest of the paper is organized as follows. In section 2, we introduce the APGR distribution. We discuss
some important statistical characteristics of the APGR distribution in section 3. In section 4, statistical
inference problem for the APGR distribution is investigated according to maximum likelihood (ML) and
least-square (LSq) methods. Section 5 includes a comprehensive Monte-Carlo simulation study display the
estimation performance of the estimators derived in section 4. A real-world data set is analyzed in section 6
for illustrative purposes. Finally, section 7 concludes the paper.

2 Definition and properties of the APGR Distribution

In this section, we derive the probability density function (pdf) and cumulative distribution function (cdf) of
the APGR distribution by using the APT method given in [5] and study some distributional properties of the
APGR distribution. Before progressing for further, we recall the generalized Rayleigh distribution. The pdf of
the generalized Rayleigh distribution is

B-1
glx; B, A) = 2[3/\2)(e_(’b‘)2 (1 - e"(’b‘)z) , x>0, 6))

and its cdf is 8
G(x, B, A) = (1—e"(’b‘)z> . x>0, Q)

where f and A is the positive and real valued scale parameter and shape parameters of the distribution,
respectively. Generalized Rayleigh distribution was originally studied by Surles and Padgett [6] as the two-
parameter Burr Type X distribution. Then, the distribution was called the generalized Rayleigh distribution
by Ragab and Kundu [25].

Now, we introduce the APGR distribution by using generalized Rayleigh distribution as a baseline
distribution in the APT method.
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Definition 1. A random variable X is said to have a APGR distribution with parameters a, § and A, if it has
the following pdf and cdf

-1 (g ?)f
g%‘{zﬁ/\zxe’("x)z (1_6—(/1x)2)ﬁ a(l e ) ,X>0, a>0Nna#1

. _ -1
fapcr(G @, B, A) = 2BA? xe- W’ (1 _ e—(AX)Z)B , x>0, a=1 G)
0 otherwise
and
(1—9’(’1")2 )ﬂ 1
ar 7 -1
Faper(x;a, B, A) = a-1 5 ,x>0,a>0/\a#1, (4)
o —(Ax)? _
1-e s x>0, a=0
respectively.

Considering the cdf given by equation (4), the survival and hazard functions of the APGR distribution can be
easily written as in the following forms:

(Pe,xz,\z)ﬂ
SwcrGca, =4 wr o x>0 ax0nazl )
- _ e -
1 1-e s x>0, a=0

and

(¢ )

2PA2xe= M) (1 - e’(’“‘f)ﬁ?1 ¢ sy lnax>0,a>0na#1
((1—e'(/‘x)2) —1)
haper(x; a, B, A) = P . 6
2pR2xe 0’ (1_ew2)
1- (1—e-(/b<)2 )’8

From now on, a random variable X distributed the APGR with parameters a, f and A will be indicated as
X ~ APGR (a, B, A). By considering the equation (11) in [5], the p-th quantile of the APGR distribution, say
Qyp, is immediately obtained as below

x>0, a=0

1/2
(— In (1 - (ln(‘ﬁ+ﬁ+ap—lﬂ)) Uﬁ))
In(a)

QP = A . (7)

Thus, when a # 1, the median of the APGR distribution is obtained as

1 1/2

1 In(%5%) )"

M_QO.S_X _ln 1_< 1na (8)

and when a = 1, the median of the APGR distribution is equal to median of the generalized Rayleigh
distribution.

Now, we discuss the shape behavior of the pdf f4pcr(x; , B, A). When X tends to 0 and X tends to oo, the
pdf fapgr(x; a, B, A) comply with the following behaviors

11m fAPGR(X; Ct',ﬁ, /\) =0
x—0*

and
lim faper(x; @, B,A) =0,
X—r00

respectively.

Theorem 1. The APGR distribution is unimodal.
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Figure 1: The pdf of the APGR distribution, when (a): « = 0.25,0.5,1.5,2., 8 =2and A = 2; (b): @ = 0.25,8 = 0.5, 1, 2, 4 and
A=2,(c:a=0.25,=2andA=0.5,1,2,4

Proof. First derivative of the pdf f4pcr(X; a, B, A) given by equation (3) is

B ln(@e o’ B (ﬁz(xﬂ)zln(a)—(ﬁ+1)eﬁ"(ﬂx+/371))
f/llPGR(X§ a,p) = (@-1)(B+1)? , a#1 )
e (1-p-po) a1
B+1 ’

When a = 1, that is the distribution is a generalized Rayleigh, mode of the distribution can be easily obtained
from solution of the equation
2,-Bx (1 _ B —
ﬁ e (1 ﬁ ﬂX) - 0. (10)
B+1
When a # 1, the derivative f} per( @, B, A) is a strictly decreasing and continuous function of x and
lin(’)l fapcr(%; @, B, A) is positive and f) pcr(x; @, B, A) takes negative values as x — oo. Thus, we can say the
x—0*

fapcr(x; @, B, A) has only one zero according to intermediate value theorem and the pdf fopgr(x; @, B, A) is
unimodal. 0

We present a figure to show the shape behavior of the APGR distribution for illustrative purposes. Fig.1
a,b,c display the some of the possible shapes of the pdf of the APGR distribution for different values of the
parameters a,  and A.
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3 Some Important Characteristics of the APGR Distribution

In this section, the moments, moment generating function and related measures such as mean, variance,
skewness and kurtosis are obtained for the APGR distribution. In addition, the distribution of order statistics,
stress-strength probability and Shannon and Rényi entropies and the Lorenz and Bonferroni curves of the
APGR distribution are also obtained in this section.

Let we first introduce the Lemma 1 to obtain the moments of APGR distribution.

Lemma 1. Let X be a random variable with pdf given by equation (3). For any real numbers a > 0, b > 0, L >
0,r >0and 6§ = 0, the integral

oo

b-1 a0?\?
&(a,b,L,1,6) = /)(’J'le"(]“")Z (1 —e_(’b‘)z) a<1 € ) e ax (11)

0

is calculated as

oo ib b-1 1777
§(ab, L, ‘”‘ZZZ{OOM) -1y (’b> (bklﬁ(L G+k+D)” I

i=0 j=0 k=0

r+3 r+3 3 62
(”( 2 >1F1< 2’2 4(]+k+1)L2>

2
r(%+1) m1F1<r;2;%;40+£+1)L2))} "

where 1 F; (.;.;.) is indicate the hypergeometric function, see [27]
Proof. See Appendix A for proof of Lemma 1. O

Obviously, by using the Lemma 1, the r-th moment, moment generating function, characteristic function,
mean and variance of the APGR distribution are easily obtained as

W= E(X') = % 2p028 (o, 8, 4,7,0), ®)
My(t) = E (e“‘) _ Ina DA (@, B.A,0,0), (14)
D% () =E(e“’<) _ Ina 2 2B (a, B, A, 0, i) (15)
p=th = E(X) = 28 0BE(a,,1,1,0), (16)

and 02 = Var (X) = ) - (p’1)2 ,respectively.
Now, we derive the central moments and cumulants of the APGR distribution. By using the raw moments
given in equation (13), r-th central moment of the APGR distribution is obtained as follow

w=>y" <Jr ) 077w ()"
=0
=Z< )( D7 28 2pE @ pih o) (2L 28 @A L)) )

j=0

Therefore, using the central moments given by equation (17), the second, third and fourth cumulants x>,
k3 and k4 can be expressed as k, = Jy, k3 = u3 and k4 = 4 - 3U3, respectively. The skewness and the kurtosis
coefficients of the APGR distribution are calculated by ; = k3/ Kg/ 2and vy, = K4/ K3.
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3.1 Order Statistics

Let X1, X5, ..., Xn be a random sample from APGR (a, 8, A) distribution and X(1)X(2)» -+-X(n) denote their
order statistics. The pdf of the random variable Xy, (r=1,2,...,n)is obtained as

fxp ¥) = (r_+(!n_r)!FAPGR(X: a, B, A" fapcr(x, a, B, (1 = Faper(x, a, B, A)" ™"

-1

1-e @) '

n! Ina 2ﬁA2xe’(Ax)z a( ) -1
r-Dn-nNta-1 a-1
1-e@?)? i B
1 a( 1) -1 (1 B e—(/lx)z)ﬁH a(l—e'“x)z)
a f—
n! e Ina (a6 -1\"" as —1\"

= 1)!(n—r)!2ﬁ/12xe 0 a-1 ( a-1 ) (1_ a-1 ) ((1 ﬂa() (18)

B
where, { = (1 - e‘("")z) . In particular, pdf of the first and n-th order statistics can be easily derived from
equation (18) as

e 1 o\
Fry 00 = n2pixe 7 B8 (1 E ) () (19
and .
2. —(w? Ina ad-1\" 1-1 ¢
fxq () = n2BA%xe a1\ a-1 (( Fa ) ) (20)
respectively.

3.2 Stress-strength probability

We suppose that X and Y be random variables from APGR (a1, B1,A1) and Y ~ APGR (a3, B2, A;) distribu-
tions, respectively. In this situation, the stress-strength probability is calculated by R = P (Y < X), where Y
represents the ’stress’ and X represents the ’strength’ to sustain the stress. For APGR distribution, stress-
strength probability P (Y < X) is obtained as below

=

R:P<Y<X):/P<Y<X\sz)fx(x)dx:/fx(x)Fy(x)dx
0 0

oo (0?2 B
1 -1 1-e
=/ s zﬁlA%xe’("l")z (1 - e’(’ll")z)ﬂl “1( ) Fy (x) dx
0

ar -1
5 (wmzx)z)’*z

7 1 (1me@19? _
=/ Ina; Zﬁlﬁﬁxefmlx)z (1—67(/11)()2)'81 1 (X(1 e (A1x ) a 1dX
ar -1 a -1
oo 2\ B 2\ B2
1 2B1A2Ina 1 (1e™ 1-e" 29
= Pl Inay /xe’(’ll")2 (1 —e’“l")z)ﬁ1 a1< ) a2< ) dx-E[X]}. 1)
(2 -1) (1 -1) J

Further, using the Lemma 1, we have

_ 1

- (az _ 1)A (aZ: BZ;AZ) -

2[31/\2 In aq
mf(al,ﬁh/h, 1,0), 22)

(173*(/‘2’02)52
where A (a2, f2,42) = E |a, .
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3.3 Shannon and Rényi Entropies

The entropy is quite important as a measure of variation or uncertainty of a random variable. In this section,
we investigate the Shannon and Rényi entropies of the APGR distribution. The Shannon entropy of a random
variable X with pdf f (x) is defined as, see [26],

H(X)=E[-Inf(x)]. (23)

Hence, the Shannon entropy of APGR (a, 3, A) distribution is obtained as

3 (X) = - / Farcr (6 & B ) In (Faper (x, @, B, A)) dx
0

—/prGR x, 0,8, )[In(Ina)-In(a-1)+In2+Inf+2InA+Inx-

B
Ax*+(B-1)In (1 - e_(A")Z) +Ina (1 - e_(AX)Z) } dx
=—{In(lna)-In(a-1)+In2+InB+2InA+E[ln(x)]-
B
NE [xz} +(B-1)E [ln (1 - e’(’b‘)zﬂ +InaE {(1 - e’(/"‘)z) } } . (24)
By applying the Lemma 1 to equation (24), the Shannon entropy H (X) is written as

HX)=-{In(lna)-In(a-1)+In2+Inf+2InA+Y,-

Ina
a-1

2BM ¢ (a, B,A,2,0)+(B-1)9, +1n agx} , (25)

B
where Y, = E(In(X)), 9, = E [ln (1 - e‘(’b‘)z)} and ¢, = E {(1 - e‘(’b‘)z) } and these expectations can be

easily calculated numerically.
Now, we calculate the Rényi entropy of the APGR distribution. We first recall the definition of the Rényi
entropy. The Rényi entropy of a random variable X with pdf f is given by

RE (&) = %gln { / If O dx}. 26)

By using the pdf (3) in the equation (26), Rényi entropy of the APGR distribution is obtained as

REyx (&) = %{ln ((Zﬁ)lz lna) Z (1 a)’ lﬁi (1[3+ﬁ > 1y %F (§'+ 1) ((] 1))[25);(_5_1)) |

j=0
@7)
see Appendix B for calculation of the Rényi entropy of the APGR distribution.

3.4 Lorenz and Bonferroni Curves

Lorenz and Bonferroni curves are two graphical representations to the measure inequality of distribution of
arandom variable. The Lorenz and Bonferroni curves for a random variable X are defined as the plot of

L) -

=

q
/ xf (x) dx, (28)
0



DE GRUYTER A New Class of Generalized Rayleigh Distributions = 707

and
q

/ xf (x) dx, (29)

0

1
B(p) = —
v bu
respectively, against F(x), where y is indicate the expectation of the random variable X and g = F* (p) also
L (p) and B (p) are called the Lorenz index and Bonferroni index, respectively. If the expectation (16) and pdf
(3) are used in the equation (28), the Lorenz index of APGR distribution is obtained as

1
L(p) = Wa) B2 (a, B, A, 1, 0)/ Xfapgr (x) dx
_ l 1 ( Ina ZBAZXG_(AX) (1 _ e_(AX)Z)ﬁ—l a<1_e(/1x)2>ﬁ> i
HQZﬁAZf((X B,A1, 0)
q
Ina 2. —(Ax)? _ —(Ax)? B-1 1_9'(/‘)()2 b
{(a,B}lloo/X< 2B xe M (1- ™) al ))dx (30)

Following steps of the proof of Lemma 1, the Lorenz index (30) is immediately written as

oo if+p-1
1
L) = .f(aﬁMO){Z > <Iﬁ+ﬁ )( 1)k x
(na)’ ﬁerf(\/iTuq) - ZWAqe’O*l)A 7 }

1)

a-1 4G + 137208

where erf(.) is indicate the error function, see [27]. Similarly, the Bonferroni index of APGR distribution is
also obtained as

oo if+p-1 /,
- 1 iB+p-1 .
B“’*W{%Z( ; >(—1)x

1= j=0
(In a) /merf (\/j + 1/1q) -2./j + 1Age U+IN¢’
a-1 4(j + 1)3/2)3 ’ G2

4 Inference

In this section, we consider the statistical inference problem for APGR (a, f3, A) distribution. We employ the
ML and LSq methods to obtaining the estimators of the unknown parameters a, 3, and A.

4.1 ML estimation

Let X1, X3, ..., Xn be a random sample from APGR (a, 3, A) distribution. The log-likelihood function of the
random variables X;, i = 1, 2, ..., n can be easily written from equation (3) as

n
L(a,B,A; X1,X5,...,Xn) =n(ln(lna)-In(a-1)+In2+Inf+21nA)+ Zlnxi—

AZZX, +(B-1) Zln (1 e~ (xi) )+lna2(1 oM )ﬁ. (33)

i=1
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Thus, by derivating the log-likelihood function given in equation (33) with respect to parameters a, 8 and A,
we can write the following likelihood equations

a—L=—$(cxlna—a+1)+li(1—e’(’1"”)2)ﬁ=0 (34)
oa a(lna)(a-1) @ ’

I Zln (1 e~ ) )+ﬁlna2(1 o)’ )ﬁ =0 (35)

m\
‘m

and

x-2 A

oL _ 7”_2;(2;(1 228 - 1)2;(, T—zﬁAlnaZx, T (1_6,,(1;/12)1; -0 (36)

Unfortunately, the ML estimators of the parameters a, f and A cannot be explicitly derived from equations
(34), (35) and (36). However, we can obtain the ML estimates of the parameters a, 8 and A, say ay;, By and
AL respectively, from the simultaneous numerical solution of equations (34), (35) and (36).

4.2 LSq Estimation

The LSq estimation method was firstly used by Swain et al. [28] as a nonlinear method in estimation of the
parameters of the Beta distribution. Especially, when the maximum likelihood estimators cannot be obtained
in an explicit form, the LSq estimates are quite important with regard to provide an initial estimation for
numerical methods which use in obtaining the maximum likelihood estimations.
The LSq estimations of the parameters a,  and A, say &g, B 1sq and AL sq» Tespectively, are obtained by
minimizing the equation
n . 2

> (FAPGR(X(i)’ a,B,A)-F (X(i))) , (37)

i=1
with respect to parameters a, A and 8, where Xg, (i=1,2,..,n)is the ith element of the ordered observa-
tions x1, X2, ..., Xn and F (.) is indicate the observations’ empirical cumulative distribution function (ecdf)
calculated as

FO= (39)
By using the equations (4) and (38) in equation (37), we have
2
n (1—e’(“(i))2>5 .
Z 44 -1 _ 1 (39)
a-1 n+1| °

i=1

Note that both LSq estimates and ML estimates of the unknown parameters can be obtained using the
numerical methods.

5 Monte-Carlo Simulation Study

In this section, some simulation studies are presented in order to compare the estimation efficiencies of the
ML and LSq estimators obtained in the previous section. In the simulation studies, two different cases a < 1
and a > 1 are considered.

In the first case, the parameter a is chosen as 0.25 and also the values of the parameters 3, A are set as
B =0.5,1,2and A = 0.5, 1, 2, respectively. The ML and LSq estimates of the parameters (Est.) are obtained
with the simulations performed by 1000 replications for the different sample of sizes n = 30, 50, 100 and
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Table 1: Parameter estimates, Bias and MSE values, when a = 0.25

a B A
a B A n  Method Est. Bias MSE Est. Bias MSE Est Bias MSE
0.25 0.50 0.50 30 ML 0.3310 0.0810 0.0829 0.5339 0.0339 0.0128 0.5331 0.0331 0.0122
LSq 0.4547 0.2047 0.1884 0.4843 -0.0157 0.0146 0.4960 -0.0040 0.0227
50 ML 0.2985 0.0485 0.0511 0.5237  0.0237  0.0069 0.5234  0.0234  0.0071
LSq 0.4221 0.1721 0.1561 0.4893 -0.0107 0.0098 0.4928 -0.0072 0.0143
100 ML 0.2640 0.0140 0.0104 0.5094  0.0094 0.0031 0.5103 0.0103  0.0028
LSq 0.4055 0.1555 0.1303 0.4845 -0.0155 0.0061 0.5023  0.0023 0.0104
200 ML 0.2635 0.0135 0.0056 0.5038 0.0038 0.0012 0.5059  0.0059 0.0013
LSq 0.3845 0.1345 0.0827 0.4827 -0.0173 0.0033 0.5115 0.0115 0.0057
1.00 30 ML 0.3224 0.0724 0.0971 0.5268 0.0268 0.0118 1.0522  0.0522  0.0487
LSq 0.4221 0.1721 0.1840 0.4879 -0.0121 0.0159 0.9644 -0.0356 0.0931
50 ML 0.2905 0.0405 0.0494 0.5160 0.0160 0.0067 1.0317  0.0317 0.0264
LSq 0.4396 0.1896 0.1731 0.4760 -0.0240 0.0085 0.9901 -0.0099 0.0762
100 ML 0.2687 0.0187 0.0190 0.5093  0.0093 0.0037 1.0062 0.0062 0.0100
LSq 0.4172 0.1672 0.1409 0.4834 -0.0166 0.0059 0.9966 -0.0034 0.0457
200 ML 0.2560 0.0060 0.0054 0.5059 0.0059 0.0015 1.0102 0.0102  0.0040
LSq 0.3654 0.1154 0.0842 0.4888 -0.0112 0.0033 1.0143  0.0143  0.0280
2.00 30 ML 0.3508 0.1008 0.1126 0.5311 0.0311 0.0123 2.1191 0.1191  0.2319
LSq 0.4029 0.1529 0.1659 0.4881 -0.0119 0.0133 1.8829 -0.1171 0.4014
50 ML 0.3233 0.0733 0.0590 0.5125 0.0125 0.0064 2.0609 0.0609 0.1113
LSq 0.4304 0.1804 0.1723 0.4836 -0.0164 0.0098 1.9363 -0.0637 0.2866
100 ML 0.2771 0.0271 0.0219 0.5096 0.0096 0.0033 2.0237 0.0237  0.0397
LSq 0.3729 0.1229 0.1164 0.4872 -0.0128 0.0054 1.9441 -0.0559 0.1902
200 ML 0.2688 0.0188 0.0204 0.5019 0.0019 0.0016 2.0029 0.0029 0.0154
LSq 0.3591 0.1091 0.0865 0.4881 -0.0119 0.0033 1.9935 -0.0065 0.1155
1.00 0.50 30 ML  0.4193 0.1693 0.2044 1.0525 0.0525 0.0565 0.5234  0.0234 0.0108
LSq 0.4877 0.2377 0.2023 0.9628 -0.0372 0.0845 0.5050 0.0050 0.0116
50 ML 0.3653 0.1153 0.0830 1.0500 0.0500 0.0358 0.5268 0.0268 0.0064
LSq 0.4403 0.1903 0.1651 0.9802 -0.0198 0.0439 0.5050 0.0050 0.0077
100 ML 0.2990 0.0490 0.0339 1.0125 0.0125 0.0151 0.5074  0.0074  0.0032
LSq 0.4238 0.1738 0.1423 0.9645 -0.0355 0.0226 0.5039 0.0039 0.0054
200 ML 0.2732 0.0232 0.0093 1.0076  0.0076  0.0074 0.5056  0.0056 0.0013
LSq 0.3890 0.1390 0.0929 0.9676 -0.0324 0.0127 0.5085 0.0085 0.0032
1.00 30 ML 0.5775 0.3275 0.5573 1.0270  0.0270  0.0666 1.0490 0.0490  0.0547
LSq 0.4907 0.2407 0.2161 0.9589 -0.0411 0.0817 0.9866 -0.0134 0.0540
50 ML  0.4350 0.1850 0.2384 1.0246  0.0246  0.0356 1.0375 0.0375 0.0344
LSq 0.4388 0.1888 0.1860 0.9794 -0.0206 0.0453 0.9958 -0.0042 0.0366
100 ML 0.3179 0.0679 0.0481 1.0107  0.0107 0.0148 1.0133  0.0133  0.0168
LSq 0.3941 0.1441 0.1358 0.9699 -0.0301 0.0218 0.9920 -0.0080 0.0250
200 ML 0.2729 0.0229 0.0137 1.0123  0.0123  0.0077 1.0081 0.0081  0.0055
LSq 0.3690 0.1190 0.1078 0.9780 -0.0220 0.0121 0.9955 -0.0045 0.0183
2.00 30 ML 0.5230 0.2730 0.4866 1.0636  0.0636  0.0830 2.1203  0.1203  0.2022
LSq 0.4464 0.1964 0.2029 0.9863 -0.0137 0.1071 1.9768 -0.0232 0.2354
50 ML 0.4479 0.1979 0.2545 1.0163  0.0163  0.0358 2.0363 0.0363  0.1255
LSq 0.4397 0.1897 0.1860 0.9671 -0.0329 0.0403 1.9618 -0.0382 0.1595
100 ML 0.3651 0.1151 0.1078 1.0098 0.0098 0.0183 2.0244  0.0244  0.0798
LSq 0.4319 0.1819 0.1677 0.9706 -0.0294 0.0226 1.9988 -0.0012 0.1115
200 ML 0.2980 0.0480 0.0330 0.9982 -0.0018 0.0084 2.0104 0.0104 0.0308
LSq 0.3954 0.1454 0.1261 0.9634 -0.0366 0.0138 1.9947 -0.0053 0.0728
2.00 0.50 30 ML 0.6306 0.3806 1.1199 2.1752  0.1752  0.4756 0.5261 0.0261  0.0090
LSq 0.4746 0.2246 0.1810 2.0750 0.0750 0.9362 0.5126  0.0126  0.0075
50 ML 0.3896 0.1396 0.1791 2.0603 0.0603 0.1600 0.5053  0.0053  0.0055
LSq 0.4653 0.2153 0.1629 1.9650 -0.0350 0.2443 0.5084  0.0084 0.0051
100 ML 0.3223 0.0723 0.0492 2.0399 0.0399 0.0773 0.5042  0.0042 0.0030
LSq 0.4474 0.1974 0.1374 1.9857 -0.0143  0.1249 0.5142  0.0142 0.0036
200 ML 0.2839 0.0339 0.0170 2.0171 0.0171  0.0352 0.5033 0.0033 0.0011
LSq 0.4171 0.1671 0.1012 1.9704 -0.0296 0.0536 0.5139  0.0139  0.0023
1.00 30 ML 0.7320 0.4820 1.5364 2.1230 0.1230  0.3462 1.0528 0.0528 0.0346
LSq 0.4745 0.2245 0.1941 1.9797 -0.0203 0.4356 1.0050  0.0050  0.0277
50 ML 0.5323 0.2823 0.5206 2.0073 0.0073  0.1550 1.0196  0.0196  0.0258
LSq 0.4783 0.2283 0.1855 1.9078 -0.0922 0.2113 1.0075 0.0075 0.0182
100 ML 0.3521 0.1021 0.0891 2.0137 0.0137  0.0709 1.0044  0.0044 0.0154
LSq 0.4389 0.1889 0.1481 1.9450 -0.0550 0.1009 1.0155 0.0155 0.0134
200 ML 0.2776 0.0276 0.0239 2.0078 0.0078 0.0342 0.9966 -0.0034 0.0073
LSq 0.4016 0.1516 0.1105 1.9548 -0.0452 0.0511 1.0155 0.0155 0.0105
2.00 30 ML 0.7357 0.4857 1.4241 2.1062 0.1062  0.2895 2.1069 0.1069 0.1367
LSq 0.4806 0.2306 0.2067 2.0005 0.0005 0.4792 2.0186 0.0186 0.1419
50 ML 0.4790 0.2290 0.3525 2.0337 0.0337 0.1646 2.0350 0.0350 0.0762
LSq 0.4346 0.1846 0.1688 1.9244 -0.0756 0.2082 1.9907 -0.0093 0.0667
100 ML 0.3738 0.1238 0.1281 2.0218 0.0218 0.0851 2.0085 0.0085 0.0663
LSq 0.4098 0.1598 0.1439 1.9477 -0.0523 0.1132 1.9959 -0.0041 0.0600
200 ML 0.3109 0.0609 0.0568 2.0054 0.0054 0.0404 1.9894 -0.0106 0.0388
LSq 0.4122 0.1622 0.1380 1.9563 -0.0437 0.0543 2.0094 0.0094  0.0498
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200. In addition, through the simulation study, the bias (Bias) and mean-squared error (MSE) values of the
ML and LSq estimators are obtained. The simulated results are given in Table 1.

For the second case of the simulation study, the a parameter is set as 4. Also, the values of the parameters
B and A are chosen 8 = 0.5,1, 2 and A = 0.5, 1, 2, respectively, as in the firs case. The simulated results are
given by Table 2.

When the results given by Tables 1 and 2 are examined, it is seen that as the sample size n increases, both
the estimations are close to actual values of the parameters and the ML and LSq estimators have smaller bias
and MSE values for all cases. Furthermore, for both cases, it is concluded that the ML estimators outperform
the LSq estimators with smaller MSE values according to the results given in Tables 1 and 2.

6 Application to Real Data

In this section, we present an analysis on a real-life data set called the coal mining disaster data set to illustrate
the modeling behavior of the APGR distribution in comparison with Rayleigh and generalized Rayleigh
distributions. The data set includes 191 observation dealing with the intervals in days between successive
coal mining disasters in Great Britain [29].

Firstly, we investigate the underlying distribution of the data set. We apply the Kolmogorov-Smirnov (KS)
test statistic to check whether this data set follows the APGR and most popular lifetime distributions such as
Rayleigh, generalized Rayleigh, exponential, Gamma, Weibull, Log-Normal. The computed values of the KS
statistic and corresponding p-values for each model are tabulated in Table 3.

By Table 3, we can say that the underlying distribution of the coal mining disaster data set is compatible
with the APGR, Gamma, Weibull and Log-Normal distributions.

Now, we apply the APGR, Gamma, Weibull and Log-Normal distributions as a model to coal mining
disaster data set and obtain the negative log-likelihood (Neg. Log-Lik) and Akaike information criterion
(AIC) values for deciding the optimal distribution model to this data set. The ML and LSq estimations of the
parameters with the obtained AIC and Neg. Log-Lik values are summarized in Table 4.

According to Table 4, it is concluded that the APGR distribution gives the better fit to the dataset than
the Weibull, Gamma and Log-Normal distributions since it has smaller AIC and Neg. Log-Lik values. The data
fitting performance of the APGR distribution can be clearly seen from Figure 2, which plots the ecdf and the
cdf fitted by APGR distribution. As can be seen from Figure 2, the fitted cdf strongly follows the empirical cdf
of the observations and this is the desired case in real-life applications.

7 Conclusion

In this study, a new life-time distribution named the APGR distribution is introduced. The pdf and cdf of the
introduced distribution are derived using the APT method. The behavior of the pdf of APGR distribution is
displayed in Figure 1 for different values of the model parameters. The expressions for basic characteristics
of the APGR distribution such as hazard function, survival function, moments, characteristic function, skew-
ness, kurtosis, order statistics, Shannon entropy, and stress-strength probability and Lorenz and Bonferroni
curves are derived in the paper. Also, the estimators of the model parameters a, § and A are obtained using
two different methods the ML and LSq. The efficiencies of the ML and LSq estimators are also compared by
comprehensive simulation studies on the different sample of sizes small, moderate and large. The simulation
results show that the efficiencies of both estimators are quite satisfactory according to bias and MSE criteria
for all sample sizes. Further, the ML and LSq estimators are asymptotically unbiased and consistent since,
when the sample size increases, both bias and MSE values converge to zero.

The APGR distribution presents better fit to the coal mining disaster data than Gamma, Weibull and Log-
Normal distributions, with the smaller Neg. Log-Lik. and AIC values. Thus, we can say that the APGR distribu-
tion provides the quite preferable modeling performance for life-time data and is a powerful alternative to the
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Table 2: Parameter estimates, Bias and MSE values, when a = 4
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a B A
a B A n  Method Est. Bias MSE Est. Bias MSE Est Bias MSE
4.00 0.50 0.50 30 ML 4.0241 0.0241  0.2554 0.5273 0.0273 0.0131 0.5177 0.0177 0.0037
LSq  4.0346 0.0346 0.2556 0.5320 0.0320 0.0187 0.5174 0.0174 0.0048
50 ML 4.0299 0.0299 0.2391 0.5143 0.0143 0.0074 0.5063 0.0063 0.0020
LSq 4.0325 0.0325 0.2399 0.5149 0.0149 0.0089 0.5068 0.0068 0.0025
100 ML 4.0130 0.0130 0.0475 0.5047 0.0047 0.0021 0.5020 0.0020 0.0007
LSq 4.0133  0.0133  0.0475 0.5045  0.0045 0.0024 0.5014 0.0014 0.0009
200 ML 4.0009 0.0009 0.0075 0.5029 0.0029 0.0010 0.5034 0.0034 0.0004
LSq  4.0012 0.0012 0.0075 0.5028 0.0028 0.0012 0.5032 0.0032 0.0005
1.00 30 ML 4.0532 0.0532  0.4908 0.5340 0.0340 0.0151 1.0276 0.0276 0.0128
LSq  4.0941 0.0941  0.4905 0.5595 0.0595 0.0304 1.0528 0.0528 0.0219
50 ML 4.0322 0.0322 0.2618 0.5182 0.0182 0.0091 1.0166 0.0166 0.0062
LSq  4.0597 0.0597  0.2865 0.5225 0.0225 0.0113 1.0234 0.0234 0.0092
100 ML 4.0120 0.0120 0.0412 0.5065 0.0065 0.0026 1.0092 0.0092 0.0026
LSq 4.0184  0.0184 0.0416 0.5089 0.0089 0.0041 1.0117 0.0117 0.0038
200 ML 4.0071 0.0071 0.0219 0.5044  0.0044 0.0018 1.0041 0.0041 0.0014
LSq  4.0083 0.0083  0.0219 0.5057 0.0057 0.0024 1.0030 0.0030 0.0021
2.00 30 ML 4.0844 0.0844  0.4919 0.5378 0.0378 0.0172 2.0478 0.0478 0.0348
LSq 4.1138 0.1138  0.4949 0.5550 0.0550 0.0272 2.0749 0.0749 0.0485
50 ML 4.0352 0.0352 0.1014 0.5319 0.0319 0.0099 2.0316 0.0316 0.0215
LSq 4.0524 0.0524  0.0986 0.5343 0.0343 0.0115 2.0414 0.0414 0.0281
100 ML 4.0074 0.0074 0.0515 0.5117 0.0117 0.0038 2.0078 0.0078 0.0066
LSq 4.0127  0.0127 0.0488 0.5132  0.0132  0.0044 2.0138 0.0138 0.0096
200 ML 3.9978 -0.0022 0.0147 0.5061 0.0061 0.0014 2.0008 0.0008 0.0036
LSqg 3.9991 -0.0009 0.0148 0.5070 0.0070 0.0018 2.0014 0.0014 0.0049
1.00 0.50 30 ML 4.0057 0.0057 0.0471 1.0075 0.0075 0.0254 0.5048 0.0048 0.0020
LSq 4.0122 0.0122  0.0502 1.0173 0.0173  0.0379 0.5073 0.0073 0.0024
50 ML 4.0038 0.0038 0.0579 1.0181 0.0181 0.0167 0.5042 0.0042 0.0011
LSq  4.0060 0.0060 0.0585 1.0201 0.0201 0.0185 0.5052 0.0052 0.0012
100 ML 3.9978 -0.0022 0.0080 1.0080 0.0080 0.0054 0.5013 0.0013 0.0005
LSq 3.9983 -0.0017 0.0080 1.0083 0.0083 0.0057 0.5011 0.0011 0.0006
200 ML 4.0006 0.0006 0.0039 1.0016 0.0016 0.0022 0.5007 0.0007 0.0003
LSq  4.0007 0.0007 0.0039 1.0018 0.0018 0.0023 0.5007 0.0007 0.0003
1.00 30 ML  3.9814 -0.0186 0.0329 1.0426 0.0426 0.0724 1.0036 0.0036 0.0069
LSq  4.0030 0.0030 0.0849 1.0489 0.0489 0.1037 1.0116 0.0116 0.0088
50 ML 4.0021 0.0021 0.0313 1.0150 0.0150 0.0242 1.0089 0.0089 0.0042
LSq 4.0105 0.0105 0.0325 1.0157 0.0157 0.0294 1.0074 0.0074 0.0054
100 ML 3.9991 -0.0009 0.0323 1.0040 0.0040 0.0117 1.0027 0.0027 0.0020
LSq 4.0001  0.0001 0.0323 1.0044 0.0044 0.0124 1.0020  0.0020 0.0024
200 ML 3.9991 -0.0009 0.0036 1.0068 0.0068 0.0042 1.0014 0.0014 0.0011
LSq 3.9998 -0.0002 0.0037 1.0061 0.0061 0.0045 1.0012 0.0012 0.0012
2.00 30 ML 3.9995 -0.0005 0.0347 1.0524 0.0524 0.0644 2.0090 0.0090 0.0177
LSq 4.0183 0.0183 0.0349 1.0597 0.0597 0.0691 2.0163 0.0163 0.0255
50 ML 3.9938 -0.0062 0.0120 1.0406 0.0406 0.0519 2.0138 0.0138 0.0124
LSq  4.0082 0.0082 0.0144 1.0562 0.0562 0.0569 2.0202 0.0202 0.0212
100 ML 4.0014 0.0014 0.0039 1.0130 0.0130 0.0172 2.0056 0.0056 0.0045
LSq  4.0049  0.0049 0.0047 1.0161 0.0161 0.0196 2.0091 0.0091 0.0071
200 ML 3.9990 -0.0010 0.0020 1.0144 0.0144 0.0076 2.0044 0.0044 0.0020
LSq  4.0001 0.0001  0.0020 1.0155 0.0155 0.0088 2.0046 0.0046 0.0024
2.00 0.50 30 ML 4.0007 0.0007  0.0692 2.0598 0.0598 0.1088 0.5010 0.0010 0.0011
LSq  4.0007 0.0007 0.0692 2.0598 0.0598 0.1089 0.5012 0.0012 0.0011
50 ML 4.0149 0.0149  0.0601 2.0287 0.0287 0.0718 0.5033 0.0033 0.0007
LSq 4.0151 0.0151  0.0602 2.0293 0.0293 0.0719 0.5032 0.0032 0.0007
100 ML 4.0008 0.0008 0.0145 2.0182 0.0182 0.0212 0.5028 0.0028 0.0004
LSq 4.0008  0.0008 0.0145 2.0182 0.0182 0.0212 0.5028 0.0028 0.0004
200 ML 4.0008 0.0008 0.0179 2.0033 0.0033 0.0086 0.5003 0.0003 0.0002
LSq  4.0008 0.0008 0.0179 2.0033 0.0033 0.0086 0.5003 0.0003 0.0002
1.00 30 ML 4.0163 0.0163  0.2120 2.1333 0.1333 0.3086 1.0133 0.0133 0.0056
LSq 4.0181 0.0181 0.2113 2.1332  0.1332  0.3090 1.0149 0.0149 0.0062
50 ML 4.0004 0.0004  0.0454 2.0808 0.0808 0.1425 1.0084 0.0084 0.0025
LSq 4.0012 0.0012  0.0448 2.0807 0.0807 0.1424 1.0095 0.0095 0.0027
100 ML 3.9903 -0.0097 0.0398 2.0413 0.0413 0.0636 1.0036 0.0036 0.0014
LSqg 3.9902 -0.0098 0.0398 2.0404 0.0404 0.0637 1.0043 0.0043 0.0014
200 ML 3.9978 -0.0022 0.0125 2.0100 0.0100 0.0137 1.0017 0.0017 0.0006
LSq 3.9979 -0.0021 0.0125 2.0103 0.0103 0.0137 1.0014 0.0014 0.0006
2.00 30 ML 4.0296 0.0296 0.1536 2.1908 0.1908 0.6677 2.0249 0.0249 0.0206
LSq  4.0440 0.0440 0.1859 2.1871 0.1871 0.66%94 2.0276 0.0276 0.0219
50 ML 3.9930 -0.0070 0.0438 2.0927 0.0927 0.2209 2.0126 0.0126 0.0095
LSq 3.9937 -0.0063 0.0436 2.0908 0.0908 0.2225 2.0138 0.0138 0.0099
100 ML 3.9876 -0.0124 0.0250 2.0371 0.0371 0.0760 2.0054 0.0054 0.0046
LSq 3.9892 -0.0108 0.0221 2.0368 0.0368 0.0760 2.0061 0.0061 0.0046
200 ML 3.9912 -0.0088 0.0140 2.0192 0.0192 0.0337 2.0013 0.0013 0.0022
LSqg 3.9915 -0.0085 0.0138 2.0194 0.0194 0.0337 2.0013 0.0013 0.0022
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Table 3: KS test results of the possible models for the coal mining disaster data set.
Model
APGR Rayleigh  Generalized Rayleigh Exponential Weibull Gamma Log-Normal
KS 0.0370 0.4530 0.1531 0.1040 0.0464 0.0558 0.0742
p-value 0.9483 7.85E-35 2.36E-04 0.0340 0.7907 0.5753 0.2352
Table 4: Model comparison and parameter estimates for the coal mining disaster data set.
Model
APGR Weibull Gamma Log-Normal
Neg. Log-Lik. 1197.6 1198.6 1201.4 1204.2
AIC 2401.1 2401.2 2406.8 2412.3
ML Estimations a 0.0045 ay 184.8301 aG 0.7211 Urn  4.5286
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Figure 2: For the coal mining disaster data set, empirical and the fitted cdf with APGR distribution.
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famous life-time distributions such as Gamma, Weibull and Log-Normal. Further, by information from real
data application carried out using the coal mining disaster data set, it can be said that the APGR distribution
has displayed more flexible data modeling performance than the baseline distributions Generalized Rayleigh
and Rayleigh. Because while the APGR distribution is a suitable model for the coal mining disaster data set
according to the obtained results of the KS test statistic given in Table 3, the Generalized Rayleigh and Rayleigh
distributions aren’t appropriate models. Therefore, it can be said that the APGR distribution has capable of
modeling more data types than the baseline distributions generalized Rayleigh and Rayleigh.

References

[1] Azzalini A.,A class of distributions which includes the normal ones,Scandinavian journal of statistics,1985, 171-178

[2] Marshall A.W., Olkin I.,A new method for adding a parameter to a family of distributions with application to the exponential
and Weibull families, Biometrika, 1997, 84(3), 641-652

[3] Shaw W.T., Buckley I.R.C., The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-
normal distribution from a rank transmutation map, arXiv preprint arXiv:0901.0434, 2009

[4] Alzaatreh A., Lee C., Famoye F., A new method for generating families of continuous distributions,Metron, 2013, 71(1), 63-79

[5] Mahdavi A., Kundu D., A new method for generating distributions with an application to exponential distribution, Communi-
cations in Statistics-Theory and Methods, 2017, 46(13), 6543-6557

[6] Surles ).G., Padgett W.)., Inference for reliability and stress-strength for a scaled Burr type X distribution, Lifetime Data
Analysis, 2001, 7(2), 187-200

[71 Merovci F., Transmuted rayleigh distribution, Austrian Journal of Statistics, 2013, 42(1), 21-31

[8] MerovciF., Elbatal I., Weibull Rayleigh distribution: Theory and applications, Applied Mathematics & Information Sciences,
2015, 9(4), 2127-2137

[9] KayalT., Tripathi Y.M., Rastogi M.K., Estimation and prediction for an inverted exponentiated Rayleigh distribution under
hybrid censoring, Communications in Statistics-Theory and Methods, 2018, 47(7), 1615-1640

[10] Salinas H.S., Iriarte Y.A., Bolfarine H., Slashed exponentiated rayleigh distribution, Revista Colombiana de Estadistica, 2015,
38(2), 543-466

[11] Gomes A.E., Da-Silva C., Cordeiro G.M., Ortega E.M.M.,A new lifetime model: the Kumaraswamy generalized Rayleigh
distribution, Journal of statistical computation and simulation, 2014, 84(2), 290-309

[12] Cordeiro G.M., Cristino C.T., Hashimoto E.M., Ortega E.M.M.,The beta generalized Rayleigh distribution with applications to
lifetime data, Statistical papers, 2013, 54(1), 133-161

[13] Iriarte Y.A., Vilca F., Varela H., Gomez H.W., Slashed generalized Rayleigh distribution, Communications in Statistics-Theory
and Methods, 2017, 46(10), 4686-4699

[14] MirMostafaee S.M.T.K., Mahdizadeh M., Lemonte A.]J., The Marshall-Olkin extended generalized Rayleigh distribution:
Properties and applications, Communications in Statistics-Theory and Methods, 2017, 46(2), 653-671

[15] Kundu D., Ragab M.Z., Generalized Rayleigh distribution: different methods of estimations, Computational statistics & data
analysis, 2005, 49(1), 187-200

[16] Mahmoud M.A.W., Ghazal M.G.M., Estimations from the exponentiated rayleigh distribution based on generalized Type-I|
hybrid censored data, Journal of the Egyptian Mathematical Society, 2017, 25(1), 71-78

[17] Ragab M.Z., Madi M.T.,Inference for the generalized Rayleigh distribution based on progressively censored data, Journal of
Statistical Planning and Inference, 2011, 141(10), 3313-3322

[18] LiY., Li M., Moment estimation of the parameters in Rayleigh distribution with two parameters, Communications in Statistics-
Theory and Methods, 2012, 41(15), 2643-2660

[19] Bicer C., Statistical Inference for Geometric Process with the Two-parameter Rayleigh Distribution, The Most Recent Studies
in Science and Art, 2018, Ankara: Gece Publishing

[20] DemirciBiger H., Biger C., Iki Parametreli Rayleigh Dagilimlarinin Sonlu Karmalarinda Parametre Tahmini, Uluslararasi Iktisadi
ve Idari Incelemeler Dergisi, 2018, 18(eyi18), 383-398

[21] BigerC., Bicer H.D., Kara M., Aydogdu H., Statistical Inference for Geometric Process with the Rayleigh Distribution, Comm.
Fac. of Sci. Univ. of Ankara Series A1: Math. and Stat., 2019, 68(1), 149-160

[22] Ling X., Giles D.E., Bias reduction for the maximum likelihood estimator of the parameters of the generalized Rayleigh family
of distributions, Communications in Statistics-Theory and Methods, 2014, 43(8), 1778-1792

[23] Esemen M., Giirler S., Parameter estimation of generalized Rayleigh distribution based on ranked set sample, Journal of
Statistical Computation and Simulation, 2018, 88(4), 615-628

[24] Khan H.M.R., Statistical inference from the generalized Rayleigh model based on neighborhood values of the MLEs, Journal
of Statistics and Management Systems, 2015, 18(1-2), 33-56

[25] Ragab M.Z., Kundu D., Burr type X distribution: revisited, Journal of Probability and Statistical Sciences, 2006, 2, 179-193



714 —— Hayrinisa Demirci Biger DE GRUYTER

[26] Bicer C., Statistical Inference for Geometric Process with the Power Lindley Distribution, Entropy, 2018, 20(10), 728-743

[27] Abramowitz M., Stegun |.A.,Handbook of mathematical functions: with formulas, graphs, and mathematical tables, 1964,
Courier Corporation

[28] Swain).J., Venkatraman S., Wilson J.R., Least-squares estimation of distribution functions in Johnson’s translation system,
Journal of Statistical Computation and Simulation, 1988, 29(4), 271-297

[29] Andrews D.F., Herzberg A.M., Data, 1985, New York: Springer

A Appendix: Proof of Lemma 1

By using the power expansion formula, equation (11) can be written as
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and by applying the gamma function in the last equation, we have
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&(a,b,L,r, ) = ZZZ{(IogG) - 1)]+k (1}b> <b } 1>; (Lz(j+](+ 1)) 3 «

i=0 j=0 k=0

r+3 r+3 3 62
(6r( 2 )1F1< 2 2’ 4(]+k+1)L2>

2
r(£+1)\/mlﬂ(r;z;%;a(iﬂil)ﬂ))} “

B Appendix: Calculation of the Rényi entropy of the APGR
distribution.

The Rényi entropy of the APGR distribution is

REX(§) = -5 1n [ (F00)f dx
0
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1-¢ a-1
0

&7 2\ B §
1 ZBAZ Ina —()? A B-1 (1—e’(’"‘) )
=1 _fln ((a—l) / (xe (1 e ) a dx. (42)
0

Applying the power expansion formula, the equation (42) is written as

2 § 7 p-1 IO
i@ =gl (2] [ (s o)) o
0
& o oo i . 3
1 2% Ina -2 (1 o\ (na) o g2\
= 1_é,ln =1 0/<xe (1 e ) Z A (1 e ) dx

_14i8\ ¢
e’ ( e’(/"‘)2>ﬁ 1+lﬁ> ) dx

i=0 (
1 2821 a\* < (Inw) PLP (g 14ip i\
_ —(AX)Z - i ( ,—(Ax)?
it () S e (1w o))
=0 =0

1 2821 a\* S (na) P ! 7 o0 _xsz
“ten (AR S () e [ (e (o)) o
i=0 j=0 0
1 2% Ina (In @)’ Bl B- 1+1B T £+ 1))
—1_€ln ( 1 ) 3 T 2 (1)’/xe dx (43)
i= = 0

By applying the gamma function to equation (43), we have

2 iB+p-1
REX(€)=1E§1H(<ZIZI_T0[) Z(ln) Z <1/3+[3 >(1);1 (

i=0

S

(44)
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