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Abstract: In the present paper, we introduce a new form of generalized Rayleigh distribution called the Alpha
Power generalizedRayleigh (APGR) distribution by following the idea of extension of the distribution families
with the Alpha Power transformation. The introduced distribution has the more general form than both the
Rayleigh and generalized Rayleigh distributions and provides a better �t than the Rayleigh and generalized
Rayleigh distributions for more various forms of the data sets. In the paper, we also obtain explicit forms of
some important statistical characteristics of theAPGRdistribution such as hazard function, survival function,
mode, moments, characteristic function, Shannon and Rényi entropies, stress-strength probability, Lorenz
and Bonferroni curves and order statistics. The statistical inference problem for the APGR distribution is
investigated by using the maximum likelihood and least-square methods. The estimation performances of
the obtained estimators are compared based on the bias andmean square error criteria by a conductedMonte-
Carlo simulation on small, moderate and large sample sizes. Finally, a real data analysis is given to show how
the proposed model works in practice.

Keywords: Alpha power transformation; Maximum likelihood estimate; Least-square estimate; Shannon
entropy; Generalized Rayleigh distribution.
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1 Introduction
The famous distribution families have been successfully used inmodeling real-world data sets, until recently.
However, it is well known that the performances of these distributions in the modeling of complex real-
world data sets are not always at the desired level. In recent years, a number of researchers who take into
account this situation have focused on introducing the �exible distribution families in order to the modeling
of data sets in a wide variety of complex structures and have made several breakthroughs by giving various
continuous distribution generating methods, especially in lifetime distributions. These distribution produce
methods lay out a new distribution taking a baseline distribution. The baseline distributions are always a
special case of thenewlyobtaineddistribution.Hence, theproduceddistributionhas the characteristics of the
baseline distribution andprovides better data �t than the baseline distribution. There are numerous papers in
the literature that create a newdistribution using a baseline distribution and draw attention to its advantages.
We refer readers to [1–5] for further information on generating a new distribution family by using a baseline
distribution.
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The Rayleigh distribution, which has only a shape parameter, was originally introduced by a study
of Rayleigh on a problem of acoustic. The distribution has a strong modeling ability of positive valued
and skewed data obtained from many �elds such as engineering, biology, life sciences, reliability and etc.
The Rayleigh distribution is a distribution related to Gamma, Weibull, Exponential and Rice distributions.
However, it has a disadvantage since the distribution has only a single shape parameter in which plays
a crucial role in describing the various behaviors of the distribution. Fortunately, to overcome this disad-
vantage of Rayleigh distribution, there are many generalizations of the distribution such as generalized
Rayleigh distribution [6], transmuted Rayleigh distribution [7], Weibull Rayleigh distribution [8], inverted
exponentiated Rayleigh distribution [9] and the slashed exponentiated Rayleigh distribution [10]. The gener-
alized Rayleigh distribution is the most widely used among these generalizations. The generalized Rayleigh
distribution has also some important generalizations recently introduced to achieve optimal data �t, such
as the Kumaraswamy generalized Rayleigh [11], the beta generalized Rayleigh [12], the slashed generalized
Rayleigh [13] and theMarshall-Olkin extended generalized Rayleigh [14]. In the literature, there are alsomany
published papers on the estimation of the parameters of Rayleigh and generalized Rayleigh distributions for
the various data types, see [15–24].

The main motivation of this paper is to introduce a more �exible lifetime distribution than the Rayleigh
and generalized Rayleigh distribution to be used for the modeling of data sets in wide variety structures. In
the aim of this context, in the study, a new three-parameter family of Rayleigh distribution which is named
alpha power generalized Rayleigh distribution (APGR) is derived using the alpha power transform (APT)
method recently introduced byMahdavi and Kundu [5]. Both Rayleigh and generalized Rayleigh distributions
are the special cases of APGR distribution. Therefore, APGR distribution has more data modeling capability
than the Rayleigh and generalized Rayleigh. Further, the APGR distribution is an important alternative to
famous distributions like Gamma, Weibull, and exponential for modeling the data observed from industrial
and physical phenomena.

The rest of the paper is organized as follows. In section 2, we introduce the APGR distribution.We discuss
some important statistical characteristics of the APGR distribution in section 3. In section 4, statistical
inference problem for the APGR distribution is investigated according to maximum likelihood (ML) and
least-square (LSq) methods. Section 5 includes a comprehensive Monte-Carlo simulation study display the
estimation performance of the estimators derived in section 4. A real-world data set is analyzed in section 6
for illustrative purposes. Finally, section 7 concludes the paper.

2 De�nition and properties of the APGR Distribution
In this section, we derive the probability density function (pdf) and cumulative distribution function (cdf) of
the APGR distribution by using the APT method given in [5] and study some distributional properties of the
APGR distribution. Before progressing for further, we recall the generalized Rayleigh distribution. The pdf of
the generalized Rayleigh distribution is

g(x; β, λ) = 2βλ2xe−(λx)
2 (

1 − e−(λx)
2)β−1

, x > 0, (1)

and its cdf is
G (x, β, λ) =

(
1 − e−(λx)

2)β
, x > 0, (2)

where β and λ is the positive and real valued scale parameter and shape parameters of the distribution,
respectively. Generalized Rayleigh distribution was originally studied by Surles and Padgett [6] as the two-
parameter Burr Type X distribution. Then, the distribution was called the generalized Rayleigh distribution
by Raqab and Kundu [25].

Now, we introduce the APGR distribution by using generalized Rayleigh distribution as a baseline
distribution in the APT method.
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De�nition 1. A random variable X is said to have a APGR distribution with parameters α, β and λ, if it has
the following pdf and cdf

fAPGR(x; α, β, λ) =


ln α
α−12βλ

2xe−(λx)
2
(
1 − e−(λx)

2
)β−1

α
(
1−e−(λx)

2)β
, x > 0, α > 0 ∧ α ≠ 1

2βλ2xe−(λx)
2
(
1 − e−(λx)

2
)β−1

, x > 0, α = 1
0 otherwise

(3)

and

FAPGR(x; α, β, λ) =


α

(
1−e−(λx)

2)β
−1

α−1 , x > 0, α > 0 ∧ α ≠ 1(
1 − e−(λx)

2
)β

, x > 0, α = 0
, (4)

respectively.

Considering the cdf given by equation (4), the survival and hazard functions of the APGR distribution can be
easily written as in the following forms:

SAPGR(x; α, β, λ) =


α−α

(
1−e−x

2λ2
)β

α−1 , x > 0, α > 0 ∧ α ≠ 1

1 −
(
1 − e−(λx)

2
)β

, x > 0, α = 0
(5)

and

hAPGR(x; α, β, λ) =


2βλ2xe−(λx)2

(
1 − e−(λx)2

)β−1 α

((
1−e−(λx)

2)β
−1
)

1−α

((
1−e−(λx)2

)β
−1
) ln α x > 0, α > 0 ∧ α = ̸ 1

2βλ2xe−(λx)
2
(
1−e−(λx)

2
)β−1

1−
(
1−e−(λx)2

)β x > 0, α = 0

. (6)

From now on, a random variable X distributed the APGR with parameters α, β and λ will be indicated as
X ∼ APGR (α, β, λ). By considering the equation (11) in [5], the p-th quantile of the APGR distribution, say
Qp , is immediately obtained as below

Qp =

(
− ln

(
1 −
(
ln(− α

1−α +
1

1−α +αp−p)
ln(α)

)1/β))1/2

λ . (7)

Thus, when α ≠ 1, the median of the APGR distribution is obtained as

M = Q0.5 =
1
λ

− ln
1 −( ln

( α+1
2
)

ln α

) 1
β
1/2

(8)

and when α = 1, the median of the APGR distribution is equal to median of the generalized Rayleigh
distribution.

Now, we discuss the shape behavior of the pdf fAPGR(x; α, β, λ). When X tends to 0 and X tends to∞, the
pdf fAPGR(x; α, β, λ) comply with the following behaviors

lim
x→0+

fAPGR(x; α, β, λ) = 0

and
lim
x→∞

fAPGR(x; α, β, λ) = 0,

respectively.

Theorem 1. The APGR distribution is unimodal.
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Figure 1: The pdf of the APGR distribution, when (a): α = 0.25, 0.5, 1.5, 2., β = 2 and λ = 2; (b): α = 0.25,β = 0.5, 1, 2, 4 and
λ = 2, (c): α = 0.25, β = 2 and λ = 0.5, 1, 2, 4

Proof. First derivative of the pdf fAPGR(x; α, β, λ) given by equation (3) is

f ′APGR(x; α, β) =


β2 ln(α)e−2βxα1−

e−βx (βx+β+1)
β+1

(
β2(x+1)2 ln(α)−(β+1)eβx(βx+β−1)

)
(α−1)(β+1)2 , α = ̸ 1

β2e−βx (1−β−βx)
β+1 , α = 1

. (9)

When α = 1, that is the distribution is a generalized Rayleigh, mode of the distribution can be easily obtained
from solution of the equation

β2e−βx (1 − β − βx)
β + 1 = 0. (10)

When α ≠ 1, the derivative f ′APGR(x; α, β, λ) is a strictly decreasing and continuous function of x and
lim
x→0+

f ′APGR(x; α, β, λ) is positive and f ′APGR(x; α, β, λ) takes negative values as x → ∞. Thus, we can say the
f ′APGR(x; α, β, λ) has only one zero according to intermediate value theorem and the pdf fAPGR(x; α, β, λ) is
unimodal.

We present a �gure to show the shape behavior of the APGR distribution for illustrative purposes. Fig.1
a,b,c display the some of the possible shapes of the pdf of the APGR distribution for di�erent values of the
parameters α, β and λ.



704 | Hayrinisa Demirci Biçer

3 Some Important Characteristics of the APGR Distribution
In this section, the moments, moment generating function and related measures such as mean, variance,
skewness and kurtosis are obtained for the APGR distribution. In addition, the distribution of order statistics,
stress-strength probability and Shannon and Rényi entropies and the Lorenz and Bonferroni curves of the
APGR distribution are also obtained in this section.

Let we �rst introduce the Lemma 1 to obtain the moments of APGR distribution.

Lemma 1. Let X be a random variable with pdf given by equation (3). For any real numbers a > 0, b > 0, L >
0, r ≥ 0 and δ ≥ 0, the integral

ξ (a, b, L, r, δ) =
∞∫
0

xr+1e−(Lx)
2 (

1 − e−(λx)
2)b−1

a
(
1−e−(Lx)

2)b
eδxdx (11)

is calculated as

ξ (a, b, L, r, δ) =
∞∑
i=0

ib∑
j=0

b−1∑
k=0

{
(log a)i
i! (−1)j+k

(
ib
j

)(
b − 1
k

)
1
2

(
L2(j + k + 1)

) 1
2 (−r−3) ×

(
δΓ
(
r + 3
2

)
1F1

(
r + 3
2 ; 32;

δ2
4(j + k + 1)L2

)
+

Γ
( r
2 + 1

)√
L2(j + k + 1) 1F1

(
r + 2
2 ; 12;

δ2
4(j + k + 1)L2

))}
(12)

where 1F1 (.; .; .) is indicate the hypergeometric function, see [27]

Proof. See Appendix A for proof of Lemma 1.

Obviously, by using the Lemma 1, the r-th moment, moment generating function, characteristic function,
mean and variance of the APGR distribution are easily obtained as

µ′r = E
(
Xr
)
= ln α
α − 12βλ

2ξ (α, β, λ, r, 0) , (13)

MX (t) = E
(
etx
)
= ln α
α − 12βλ

2ξ (α, β, λ, 0, t) , (14)

ΦX (t) = E
(
eitx
)
= ln α
α − 12βλ

2ξ (α, β, λ, 0, it) (15)

µ = µ′1 = E (X) =
ln α
α − 12βλ

2ξ (α, β, λ, 1, 0) , (16)

and σ2 = Var (X) = µ′2 −
(
µ′1
)2 ,respectively.

Now,we derive the central moments and cumulants of the APGR distribution. By using the rawmoments
given in equation (13), r-th central moment of the APGR distribution is obtained as follow

µr =
r∑
j=0

(
r
j

)
(−1)r−j µ′j

(
µ′1
)r−j

=
r∑
j=0

(
r
j

)
(−1)r−j ln α

α − 12βλ
2ξ (α, β, λ, j, 0)

(
ln α
α − 12βλ

2ξ (α, β, λ, 1, 0)
)r−j

. (17)

Therefore, using the central moments given by equation (17), the second, third and fourth cumulants κ2,
κ3 and κ4 can be expressed as κ2 = µ2, κ3 = µ3 and κ4 = µ4−3µ22, respectively. The skewness and the kurtosis
coe�cients of the APGR distribution are calculated by γ1 = κ3/κ3/22 and γ2 = κ4/κ22.
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3.1 Order Statistics

Let X1, X2, ..., Xn be a random sample from APGR (α, β, λ) distribution and X(1),X(2), ...X(n) denote their
order statistics. The pdf of the random variable X(r), (r = 1, 2, ..., n) is obtained as

fX(r) (x) =
n!

(r − 1)!(n − r)!FAPGR(x, α, β, λ)
r−1fAPGR(x, α, β, λ)(1 − FAPGR(x, α, β, λ))n−r

=

 n!
(r − 1)!(n − r)!

ln α
α − 12βλ

2xe−(λx)
2

α(1−e−(λx)2)β − 1
α − 1

r−1

1 − α
(
1−e−(λx)

2)β
− 1

α − 1

n−r (
1 − e−(λx)

2)β−1
α
(
1−e−(λx)

2)β
= n!
(r − 1)!(n − r)!2βλ

2xe−(λx)
2 ln α
α − 1

(
αζ − 1
α − 1

)r−1(
1 − α

ζ − 1
α − 1

)n−r (
ζ 1−

1
β αζ
)

(18)

where, ζ =
(
1 − e−(λx)

2
)β

. In particular, pdf of the �rst and n-th order statistics can be easily derived from
equation (18) as

fX(1) (x) = n2βλ
2xe−(λx)

2 ln α
α − 1

(
1 − α

ζ − 1
α − 1

)n−1 (
ζ 1−

1
β αζ
)

(19)

and

fX(n) (x) = n2βλ
2xe−(λx)

2 ln α
α − 1

(
αζ − 1
α − 1

)n−1 (
ζ 1−

1
β αζ
)
, (20)

respectively.

3.2 Stress-strength probability

We suppose that X and Y be random variables from APGR (α1, β1, λ1) and Y ∼ APGR (α2, β2, λ2) distribu-
tions, respectively. In this situation, the stress-strength probability is calculated by R = P (Y < X), where Y
represents the ’stress’ and X represents the ’strength’ to sustain the stress. For APGR distribution, stress-
strength probability P (Y < X) is obtained as below

R = P (Y < X) =
∞∫
0

P (Y < X | X = x) fX (x) dx =
∞∫
0

fX (x) FY (x) dx

=
∞∫
0

ln α1
α1 − 1

2β1λ21xe−(λ1x)
2 (

1 − e−(λ1x)
2)β1−1

α

(
1−e−(λ1x)

2
)β1

1 FY (x) dx

=
∞∫
0

ln α1
α1 − 1

2β1λ21xe−(λ1x)
2 (

1 − e−(λ1x)
2)β1−1

α

(
1−e−(λ1x)

2
)β1 α

(
1−e−(λ2x)

2
)β2

2 − 1
α2 − 1

dx

=
1

(α2 − 1)

2β1λ21 ln α1
(α1 − 1)

∞∫
0

xe−(λ1x)
2 (

1 − e−(λ1x)
2)β1−1

α

(
1−e−(λx)

2
)β

1 α

(
1−e−(λ2x)

2
)β2

2 dx − E [X]

 . (21)

Further, using the Lemma 1, we have

R = 1
(α2 − 1)

Λ (α2, β2, λ2) −
2β1λ21 ln α1

(α − 1) (α2 − 1)
ξ (α1, β1, λ1, 1, 0) , (22)

where Λ (α2, β2, λ2) = E
[
α
(
1−e−(λ2x)

2)β2
2

]
.
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3.3 Shannon and Rényi Entropies

The entropy is quite important as a measure of variation or uncertainty of a random variable. In this section,
we investigate the Shannon and Rényi entropies of the APGR distribution. The Shannon entropy of a random
variable X with pdf f (x) is de�ned as, see [26],

H (X) = E [− ln f (x)] . (23)

Hence, the Shannon entropy of APGR (α, β, λ) distribution is obtained as

H (X) = −
∞∫
0

fAPGR (x, α, β, λ) ln (fAPGR (x, α, β, λ)) dx

= −
∞∫
0

fAPGR (x, α, β, λ) [ln (ln α) − ln (α − 1) + ln 2 + ln β + 2 ln λ + ln x−

λ2x2 + (β − 1) ln
(
1 − e−(λx)

2)
+ ln α

(
1 − e−(λx)

2)β]
dx

= − {ln (ln α) − ln (α − 1) + ln 2 + ln β + 2 ln λ + E [ln (x)]−

λ2E
[
x2
]
+ (β − 1) E

[
ln
(
1 − e−(λx)

2)]
+ ln αE

[(
1 − e−(λx)

2)β]}
. (24)

By applying the Lemma 1 to equation (24), the Shannon entropyH (X) is written as

H (X) = − {ln (ln α) − ln (α − 1) + ln 2 + ln β + 2 ln λ + ΥX−
ln α
α − 12βλ

4ξ (α, β, λ, 2, 0) + (β − 1) ϑX + ln αςX
}
, (25)

where ΥX = E (ln (X)) , ϑX = E
[
ln
(
1 − e−(λx)

2
)]

and ςX = E
[(

1 − e−(λx)
2
)β]

and these expectations can be

easily calculated numerically.
Now, we calculate the Rényi entropy of the APGR distribution. We �rst recall the de�nition of the Rényi

entropy. The Rényi entropy of a random variable X with pdf f is given by

REX (ξ ) =
1

1 − ξ ln


∞∫

−∞

[f (x)]ξ dx

 . (26)

By using the pdf (3) in the equation (26), Rényi entropy of the APGR distribution is obtained as

REX (ξ ) =
1

1 − ξ ln

(2βλ2 ln α
α − 1

)ξ ∞∑
i=0

(ln α)i
i!

iβ+β−1∑
j=0

(
iβ + β − 1

j

)
(−1)j 12 Γ

(
ξ + 1
2

)(
(j + 1)λ2ξ

) 1
2 (−ξ−1)

 ,

(27)
see Appendix B for calculation of the Rényi entropy of the APGR distribution.

3.4 Lorenz and Bonferroni Curves

Lorenz and Bonferroni curves are two graphical representations to the measure inequality of distribution of
a random variable. The Lorenz and Bonferroni curves for a random variable X are de�ned as the plot of

L(p) = 1
µ

q∫
0

xf (x) dx, (28)
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and

B(p) = 1
pµ

q∫
0

xf (x) dx, (29)

respectively, against F(x), where µ is indicate the expectation of the random variable X and q = F−1 (p) also
L (p) and B (p) are called the Lorenz index and Bonferroni index, respectively. If the expectation (16) and pdf
(3) are used in the equation (28), the Lorenz index of APGR distribution is obtained as

L (p) = 1
ln α
α−12βλ2ξ (α, β, λ, 1, 0)

q∫
0

xfAPGR (x) dx

= 1
ln α
α−12βλ2ξ (α, β, λ, 1, 0)

q∫
0

x
(

ln α
α − 12βλ

2xe−(λx)
2 (

1 − e−(λx)
2)β−1

α
(
1−e−(λx)

2)β)
dx

= 1
ξ (α, β, λ, 1, 0)

q∫
0

x
(

ln α
α − 12βλ

2xe−(λx)
2 (

1 − e−(λx)
2)β−1

α
(
1−e−(λx)

2)β)
dx (30)

Following steps of the proof of Lemma 1, the Lorenz index (30) is immediately written as

L (p) = 1
ξ (α, β, λ, 1, 0)


∞∑
i=0

iβ+β−1∑
j=0

(
iβ + β − 1

j

)
(−1)k ×

(ln α)i
α − 1

√
πerf

(√
j + 1λq

)
− 2
√
j + 1λqe−(j+1)λ

2q2

4(j + 1)3/2λ3

 , (31)

where erf(.) is indicate the error function, see [27]. Similarly, the Bonferroni index of APGR distribution is
also obtained as

B (p) = 1
pξ (α, β, λ, 1, 0)


∞∑
i=0

iβ+β−1∑
j=0

(
iβ + β − 1

j

)
(−1)k ×

(ln α)i
α − 1

√
πerf

(√
j + 1λq

)
− 2
√
j + 1λqe−(j+1)λ

2q2

4(j + 1)3/2λ3

 , (32)

4 Inference
In this section, we consider the statistical inference problem for APGR (α, β, λ) distribution. We employ the
ML and LSq methods to obtaining the estimators of the unknown parameters α, β, and λ.

4.1 ML estimation

Let X1, X2, ..., Xn be a random sample from APGR (α, β, λ) distribution. The log-likelihood function of the
random variables Xi , i = 1, 2, ..., n can be easily written from equation (3) as

L (α, β, λ; X1, X2, ..., Xn) = n (ln (ln α) − ln (α − 1) + ln 2 + ln β + 2 ln λ) +
n∑
i=1

ln xi−

λ2
n∑
i=1

x2i + (β − 1)
n∑
i=1

ln
(
1 − e−(λxi)

2)
+ ln α

n∑
i=1

(
1 − e−(λxi)

2)β
. (33)
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Thus, by derivating the log-likelihood function given in equation (33) with respect to parameters α, β and λ,
we can write the following likelihood equations

∂L
∂α = − n

α (ln α) (α − 1) (
α ln α − α + 1) + 1

α

n∑
i=1

(
1 − e−(λxi)

2)β
= 0, (34)

∂L
∂β = nβ +

n∑
i=1

ln
(
1 − e−(λxi)

2)
+ β ln α

n∑
i=1

(
1 − e−(λxi)

2)β−1
= 0 (35)

and

∂L
∂λ = 2n

λ − 2λ
n∑
i=1

x2i − 2λ (β − 1)
n∑
i=1

x2i
e−λ

2x2i

e−λ2x2i − 1
− 2βλ ln α

n∑
i=1

x2i
e−x

2
i λ

2

e−x2i λ2 − 1

(
1 − e−x

2
i λ

2)β
= 0 (36)

Unfortunately, the ML estimators of the parameters α, β and λ cannot be explicitly derived from equations
(34), (35) and (36). However, we can obtain the ML estimates of the parameters α, β and λ, say α̂ML , β̂ML and
λ̂ML , respectively, from the simultaneous numerical solution of equations (34), (35) and (36).

4.2 LSq Estimation

The LSq estimation method was �rstly used by Swain et al. [28] as a nonlinear method in estimation of the
parameters of the Beta distribution. Especially, when themaximum likelihood estimators cannot be obtained
in an explicit form, the LSq estimates are quite important with regard to provide an initial estimation for
numerical methods which use in obtaining the maximum likelihood estimations.

The LSq estimations of the parameters α, β and λ, say α̂LSq , β̂LSq and λ̂LSq , respectively, are obtained by
minimizing the equation

n∑
i=1

(
FAPGR(x(i), α, β, λ) − F̂

(
x(i)
))2

, (37)

with respect to parameters α, λ and β, where x(i), (i = 1, 2, ..., n) is the ith element of the ordered observa-
tions x1, x2, ..., xn and F̂ (.) is indicate the observations’ empirical cumulative distribution function (ecdf)
calculated as

F̂ (.) = i
n + 1 . (38)

By using the equations (4) and (38) in equation (37), we have

n∑
i=1

α
(
1−e−(λx(i))

2)β

− 1
α − 1 − i

n + 1


2

. (39)

Note that both LSq estimates and ML estimates of the unknown parameters can be obtained using the
numerical methods.

5 Monte-Carlo Simulation Study
In this section, some simulation studies are presented in order to compare the estimation e�ciencies of the
ML and LSq estimators obtained in the previous section. In the simulation studies, two di�erent cases α < 1
and α > 1 are considered.

In the �rst case, the parameter α is chosen as 0.25 and also the values of the parameters β, λ are set as
β = 0.5, 1, 2 and λ = 0.5, 1, 2, respectively. The ML and LSq estimates of the parameters (Est.) are obtained
with the simulations performed by 1000 replications for the di�erent sample of sizes n = 30, 50, 100 and
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Table 1: Parameter estimates, Bias and MSE values, when α = 0.25

α β λ
α β λ n Method Est. Bias MSE Est. Bias MSE Est Bias MSE

0.25 0.50 0.50 30 ML 0.3310 0.0810 0.0829 0.5339 0.0339 0.0128 0.5331 0.0331 0.0122
LSq 0.4547 0.2047 0.1884 0.4843 -0.0157 0.0146 0.4960 -0.0040 0.0227

50 ML 0.2985 0.0485 0.0511 0.5237 0.0237 0.0069 0.5234 0.0234 0.0071
LSq 0.4221 0.1721 0.1561 0.4893 -0.0107 0.0098 0.4928 -0.0072 0.0143

100 ML 0.2640 0.0140 0.0104 0.5094 0.0094 0.0031 0.5103 0.0103 0.0028
LSq 0.4055 0.1555 0.1303 0.4845 -0.0155 0.0061 0.5023 0.0023 0.0104

200 ML 0.2635 0.0135 0.0056 0.5038 0.0038 0.0012 0.5059 0.0059 0.0013
LSq 0.3845 0.1345 0.0827 0.4827 -0.0173 0.0033 0.5115 0.0115 0.0057

1.00 30 ML 0.3224 0.0724 0.0971 0.5268 0.0268 0.0118 1.0522 0.0522 0.0487
LSq 0.4221 0.1721 0.1840 0.4879 -0.0121 0.0159 0.9644 -0.0356 0.0931

50 ML 0.2905 0.0405 0.0494 0.5160 0.0160 0.0067 1.0317 0.0317 0.0264
LSq 0.4396 0.1896 0.1731 0.4760 -0.0240 0.0085 0.9901 -0.0099 0.0762

100 ML 0.2687 0.0187 0.0190 0.5093 0.0093 0.0037 1.0062 0.0062 0.0100
LSq 0.4172 0.1672 0.1409 0.4834 -0.0166 0.0059 0.9966 -0.0034 0.0457

200 ML 0.2560 0.0060 0.0054 0.5059 0.0059 0.0015 1.0102 0.0102 0.0040
LSq 0.3654 0.1154 0.0842 0.4888 -0.0112 0.0033 1.0143 0.0143 0.0280

2.00 30 ML 0.3508 0.1008 0.1126 0.5311 0.0311 0.0123 2.1191 0.1191 0.2319
LSq 0.4029 0.1529 0.1659 0.4881 -0.0119 0.0133 1.8829 -0.1171 0.4014

50 ML 0.3233 0.0733 0.0590 0.5125 0.0125 0.0064 2.0609 0.0609 0.1113
LSq 0.4304 0.1804 0.1723 0.4836 -0.0164 0.0098 1.9363 -0.0637 0.2866

100 ML 0.2771 0.0271 0.0219 0.5096 0.0096 0.0033 2.0237 0.0237 0.0397
LSq 0.3729 0.1229 0.1164 0.4872 -0.0128 0.0054 1.9441 -0.0559 0.1902

200 ML 0.2688 0.0188 0.0204 0.5019 0.0019 0.0016 2.0029 0.0029 0.0154
LSq 0.3591 0.1091 0.0865 0.4881 -0.0119 0.0033 1.9935 -0.0065 0.1155

1.00 0.50 30 ML 0.4193 0.1693 0.2044 1.0525 0.0525 0.0565 0.5234 0.0234 0.0108
LSq 0.4877 0.2377 0.2023 0.9628 -0.0372 0.0845 0.5050 0.0050 0.0116

50 ML 0.3653 0.1153 0.0830 1.0500 0.0500 0.0358 0.5268 0.0268 0.0064
LSq 0.4403 0.1903 0.1651 0.9802 -0.0198 0.0439 0.5050 0.0050 0.0077

100 ML 0.2990 0.0490 0.0339 1.0125 0.0125 0.0151 0.5074 0.0074 0.0032
LSq 0.4238 0.1738 0.1423 0.9645 -0.0355 0.0226 0.5039 0.0039 0.0054

200 ML 0.2732 0.0232 0.0093 1.0076 0.0076 0.0074 0.5056 0.0056 0.0013
LSq 0.3890 0.1390 0.0929 0.9676 -0.0324 0.0127 0.5085 0.0085 0.0032

1.00 30 ML 0.5775 0.3275 0.5573 1.0270 0.0270 0.0666 1.0490 0.0490 0.0547
LSq 0.4907 0.2407 0.2161 0.9589 -0.0411 0.0817 0.9866 -0.0134 0.0540

50 ML 0.4350 0.1850 0.2384 1.0246 0.0246 0.0356 1.0375 0.0375 0.0344
LSq 0.4388 0.1888 0.1860 0.9794 -0.0206 0.0453 0.9958 -0.0042 0.0366

100 ML 0.3179 0.0679 0.0481 1.0107 0.0107 0.0148 1.0133 0.0133 0.0168
LSq 0.3941 0.1441 0.1358 0.9699 -0.0301 0.0218 0.9920 -0.0080 0.0250

200 ML 0.2729 0.0229 0.0137 1.0123 0.0123 0.0077 1.0081 0.0081 0.0055
LSq 0.3690 0.1190 0.1078 0.9780 -0.0220 0.0121 0.9955 -0.0045 0.0183

2.00 30 ML 0.5230 0.2730 0.4866 1.0636 0.0636 0.0830 2.1203 0.1203 0.2022
LSq 0.4464 0.1964 0.2029 0.9863 -0.0137 0.1071 1.9768 -0.0232 0.2354

50 ML 0.4479 0.1979 0.2545 1.0163 0.0163 0.0358 2.0363 0.0363 0.1255
LSq 0.4397 0.1897 0.1860 0.9671 -0.0329 0.0403 1.9618 -0.0382 0.1595

100 ML 0.3651 0.1151 0.1078 1.0098 0.0098 0.0183 2.0244 0.0244 0.0798
LSq 0.4319 0.1819 0.1677 0.9706 -0.0294 0.0226 1.9988 -0.0012 0.1115

200 ML 0.2980 0.0480 0.0330 0.9982 -0.0018 0.0084 2.0104 0.0104 0.0308
LSq 0.3954 0.1454 0.1261 0.9634 -0.0366 0.0138 1.9947 -0.0053 0.0728

2.00 0.50 30 ML 0.6306 0.3806 1.1199 2.1752 0.1752 0.4756 0.5261 0.0261 0.0090
LSq 0.4746 0.2246 0.1810 2.0750 0.0750 0.9362 0.5126 0.0126 0.0075

50 ML 0.3896 0.1396 0.1791 2.0603 0.0603 0.1600 0.5053 0.0053 0.0055
LSq 0.4653 0.2153 0.1629 1.9650 -0.0350 0.2443 0.5084 0.0084 0.0051

100 ML 0.3223 0.0723 0.0492 2.0399 0.0399 0.0773 0.5042 0.0042 0.0030
LSq 0.4474 0.1974 0.1374 1.9857 -0.0143 0.1249 0.5142 0.0142 0.0036

200 ML 0.2839 0.0339 0.0170 2.0171 0.0171 0.0352 0.5033 0.0033 0.0011
LSq 0.4171 0.1671 0.1012 1.9704 -0.0296 0.0536 0.5139 0.0139 0.0023

1.00 30 ML 0.7320 0.4820 1.5364 2.1230 0.1230 0.3462 1.0528 0.0528 0.0346
LSq 0.4745 0.2245 0.1941 1.9797 -0.0203 0.4356 1.0050 0.0050 0.0277

50 ML 0.5323 0.2823 0.5206 2.0073 0.0073 0.1550 1.0196 0.0196 0.0258
LSq 0.4783 0.2283 0.1855 1.9078 -0.0922 0.2113 1.0075 0.0075 0.0182

100 ML 0.3521 0.1021 0.0891 2.0137 0.0137 0.0709 1.0044 0.0044 0.0154
LSq 0.4389 0.1889 0.1481 1.9450 -0.0550 0.1009 1.0155 0.0155 0.0134

200 ML 0.2776 0.0276 0.0239 2.0078 0.0078 0.0342 0.9966 -0.0034 0.0073
LSq 0.4016 0.1516 0.1105 1.9548 -0.0452 0.0511 1.0155 0.0155 0.0105

2.00 30 ML 0.7357 0.4857 1.4241 2.1062 0.1062 0.2895 2.1069 0.1069 0.1367
LSq 0.4806 0.2306 0.2067 2.0005 0.0005 0.4792 2.0186 0.0186 0.1419

50 ML 0.4790 0.2290 0.3525 2.0337 0.0337 0.1646 2.0350 0.0350 0.0762
LSq 0.4346 0.1846 0.1688 1.9244 -0.0756 0.2082 1.9907 -0.0093 0.0667

100 ML 0.3738 0.1238 0.1281 2.0218 0.0218 0.0851 2.0085 0.0085 0.0663
LSq 0.4098 0.1598 0.1439 1.9477 -0.0523 0.1132 1.9959 -0.0041 0.0600

200 ML 0.3109 0.0609 0.0568 2.0054 0.0054 0.0404 1.9894 -0.0106 0.0388
LSq 0.4122 0.1622 0.1380 1.9563 -0.0437 0.0543 2.0094 0.0094 0.0498
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200. In addition, through the simulation study, the bias (Bias) and mean-squared error (MSE) values of the
ML and LSq estimators are obtained. The simulated results are given in Table 1.

For the second case of the simulation study, the α parameter is set as 4. Also, the values of the parameters
β and λ are chosen β = 0.5, 1, 2 and λ = 0.5, 1, 2, respectively, as in the �rs case. The simulated results are
given by Table 2.

When the results given by Tables 1 and 2 are examined, it is seen that as the sample size n increases, both
the estimations are close to actual values of the parameters and the ML and LSq estimators have smaller bias
and MSE values for all cases. Furthermore, for both cases, it is concluded that the ML estimators outperform
the LSq estimators with smaller MSE values according to the results given in Tables 1 and 2.

6 Application to Real Data
In this section,wepresent ananalysis ona real-life data set called the coalminingdisaster data set to illustrate
the modeling behavior of the APGR distribution in comparison with Rayleigh and generalized Rayleigh
distributions. The data set includes 191 observation dealing with the intervals in days between successive
coal mining disasters in Great Britain [29].

Firstly, we investigate the underlying distribution of the data set. We apply the Kolmogorov-Smirnov (KS)
test statistic to check whether this data set follows the APGR andmost popular lifetime distributions such as
Rayleigh, generalized Rayleigh, exponential, Gamma, Weibull, Log-Normal. The computed values of the KS
statistic and corresponding p-values for each model are tabulated in Table 3.

By Table 3, we can say that the underlying distribution of the coal mining disaster data set is compatible
with the APGR, Gamma, Weibull and Log-Normal distributions.

Now, we apply the APGR, Gamma, Weibull and Log-Normal distributions as a model to coal mining
disaster data set and obtain the negative log-likelihood (Neg. Log-Lik) and Akaike information criterion
(AIC) values for deciding the optimal distribution model to this data set. The ML and LSq estimations of the
parameters with the obtained AIC and Neg. Log-Lik values are summarized in Table 4.

According to Table 4, it is concluded that the APGR distribution gives the better �t to the dataset than
theWeibull, Gamma and Log-Normal distributions since it has smaller AIC and Neg. Log-Lik values. The data
�tting performance of the APGR distribution can be clearly seen from Figure 2, which plots the ecdf and the
cdf �tted by APGR distribution. As can be seen from Figure 2, the �tted cdf strongly follows the empirical cdf
of the observations and this is the desired case in real-life applications.

7 Conclusion
In this study, a new life-time distribution named the APGR distribution is introduced. The pdf and cdf of the
introduced distribution are derived using the APT method. The behavior of the pdf of APGR distribution is
displayed in Figure 1 for di�erent values of the model parameters. The expressions for basic characteristics
of the APGR distribution such as hazard function, survival function, moments, characteristic function, skew-
ness, kurtosis, order statistics, Shannon entropy, and stress-strength probability and Lorenz and Bonferroni
curves are derived in the paper. Also, the estimators of the model parameters α, β and λ are obtained using
two di�erent methods the ML and LSq. The e�ciencies of the ML and LSq estimators are also compared by
comprehensive simulation studies on the di�erent sample of sizes small, moderate and large. The simulation
results show that the e�ciencies of both estimators are quite satisfactory according to bias and MSE criteria
for all sample sizes. Further, the ML and LSq estimators are asymptotically unbiased and consistent since,
when the sample size increases, both bias and MSE values converge to zero.

The APGR distribution presents better �t to the coal mining disaster data than Gamma,Weibull and Log-
Normal distributions, with the smaller Neg. Log-Lik. andAIC values. Thus, we can say that the APGR distribu-
tion provides the quite preferablemodeling performance for life-time data and is a powerful alternative to the
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Table 2: Parameter estimates, Bias and MSE values, when α = 4

α β λ
α β λ n Method Est. Bias MSE Est. Bias MSE Est Bias MSE

4.00 0.50 0.50 30 ML 4.0241 0.0241 0.2554 0.5273 0.0273 0.0131 0.5177 0.0177 0.0037
LSq 4.0346 0.0346 0.2556 0.5320 0.0320 0.0187 0.5174 0.0174 0.0048

50 ML 4.0299 0.0299 0.2391 0.5143 0.0143 0.0074 0.5063 0.0063 0.0020
LSq 4.0325 0.0325 0.2399 0.5149 0.0149 0.0089 0.5068 0.0068 0.0025

100 ML 4.0130 0.0130 0.0475 0.5047 0.0047 0.0021 0.5020 0.0020 0.0007
LSq 4.0133 0.0133 0.0475 0.5045 0.0045 0.0024 0.5014 0.0014 0.0009

200 ML 4.0009 0.0009 0.0075 0.5029 0.0029 0.0010 0.5034 0.0034 0.0004
LSq 4.0012 0.0012 0.0075 0.5028 0.0028 0.0012 0.5032 0.0032 0.0005

1.00 30 ML 4.0532 0.0532 0.4908 0.5340 0.0340 0.0151 1.0276 0.0276 0.0128
LSq 4.0941 0.0941 0.4905 0.5595 0.0595 0.0304 1.0528 0.0528 0.0219

50 ML 4.0322 0.0322 0.2618 0.5182 0.0182 0.0091 1.0166 0.0166 0.0062
LSq 4.0597 0.0597 0.2865 0.5225 0.0225 0.0113 1.0234 0.0234 0.0092

100 ML 4.0120 0.0120 0.0412 0.5065 0.0065 0.0026 1.0092 0.0092 0.0026
LSq 4.0184 0.0184 0.0416 0.5089 0.0089 0.0041 1.0117 0.0117 0.0038

200 ML 4.0071 0.0071 0.0219 0.5044 0.0044 0.0018 1.0041 0.0041 0.0014
LSq 4.0083 0.0083 0.0219 0.5057 0.0057 0.0024 1.0030 0.0030 0.0021

2.00 30 ML 4.0844 0.0844 0.4919 0.5378 0.0378 0.0172 2.0478 0.0478 0.0348
LSq 4.1138 0.1138 0.4949 0.5550 0.0550 0.0272 2.0749 0.0749 0.0485

50 ML 4.0352 0.0352 0.1014 0.5319 0.0319 0.0099 2.0316 0.0316 0.0215
LSq 4.0524 0.0524 0.0986 0.5343 0.0343 0.0115 2.0414 0.0414 0.0281

100 ML 4.0074 0.0074 0.0515 0.5117 0.0117 0.0038 2.0078 0.0078 0.0066
LSq 4.0127 0.0127 0.0488 0.5132 0.0132 0.0044 2.0138 0.0138 0.0096

200 ML 3.9978 -0.0022 0.0147 0.5061 0.0061 0.0014 2.0008 0.0008 0.0036
LSq 3.9991 -0.0009 0.0148 0.5070 0.0070 0.0018 2.0014 0.0014 0.0049

1.00 0.50 30 ML 4.0057 0.0057 0.0471 1.0075 0.0075 0.0254 0.5048 0.0048 0.0020
LSq 4.0122 0.0122 0.0502 1.0173 0.0173 0.0379 0.5073 0.0073 0.0024

50 ML 4.0038 0.0038 0.0579 1.0181 0.0181 0.0167 0.5042 0.0042 0.0011
LSq 4.0060 0.0060 0.0585 1.0201 0.0201 0.0185 0.5052 0.0052 0.0012

100 ML 3.9978 -0.0022 0.0080 1.0080 0.0080 0.0054 0.5013 0.0013 0.0005
LSq 3.9983 -0.0017 0.0080 1.0083 0.0083 0.0057 0.5011 0.0011 0.0006

200 ML 4.0006 0.0006 0.0039 1.0016 0.0016 0.0022 0.5007 0.0007 0.0003
LSq 4.0007 0.0007 0.0039 1.0018 0.0018 0.0023 0.5007 0.0007 0.0003

1.00 30 ML 3.9814 -0.0186 0.0329 1.0426 0.0426 0.0724 1.0036 0.0036 0.0069
LSq 4.0030 0.0030 0.0849 1.0489 0.0489 0.1037 1.0116 0.0116 0.0088

50 ML 4.0021 0.0021 0.0313 1.0150 0.0150 0.0242 1.0089 0.0089 0.0042
LSq 4.0105 0.0105 0.0325 1.0157 0.0157 0.0294 1.0074 0.0074 0.0054

100 ML 3.9991 -0.0009 0.0323 1.0040 0.0040 0.0117 1.0027 0.0027 0.0020
LSq 4.0001 0.0001 0.0323 1.0044 0.0044 0.0124 1.0020 0.0020 0.0024

200 ML 3.9991 -0.0009 0.0036 1.0068 0.0068 0.0042 1.0014 0.0014 0.0011
LSq 3.9998 -0.0002 0.0037 1.0061 0.0061 0.0045 1.0012 0.0012 0.0012

2.00 30 ML 3.9995 -0.0005 0.0347 1.0524 0.0524 0.0644 2.0090 0.0090 0.0177
LSq 4.0183 0.0183 0.0349 1.0597 0.0597 0.0691 2.0163 0.0163 0.0255

50 ML 3.9938 -0.0062 0.0120 1.0406 0.0406 0.0519 2.0138 0.0138 0.0124
LSq 4.0082 0.0082 0.0144 1.0562 0.0562 0.0569 2.0202 0.0202 0.0212

100 ML 4.0014 0.0014 0.0039 1.0130 0.0130 0.0172 2.0056 0.0056 0.0045
LSq 4.0049 0.0049 0.0047 1.0161 0.0161 0.0196 2.0091 0.0091 0.0071

200 ML 3.9990 -0.0010 0.0020 1.0144 0.0144 0.0076 2.0044 0.0044 0.0020
LSq 4.0001 0.0001 0.0020 1.0155 0.0155 0.0088 2.0046 0.0046 0.0024

2.00 0.50 30 ML 4.0007 0.0007 0.0692 2.0598 0.0598 0.1088 0.5010 0.0010 0.0011
LSq 4.0007 0.0007 0.0692 2.0598 0.0598 0.1089 0.5012 0.0012 0.0011

50 ML 4.0149 0.0149 0.0601 2.0287 0.0287 0.0718 0.5033 0.0033 0.0007
LSq 4.0151 0.0151 0.0602 2.0293 0.0293 0.0719 0.5032 0.0032 0.0007

100 ML 4.0008 0.0008 0.0145 2.0182 0.0182 0.0212 0.5028 0.0028 0.0004
LSq 4.0008 0.0008 0.0145 2.0182 0.0182 0.0212 0.5028 0.0028 0.0004

200 ML 4.0008 0.0008 0.0179 2.0033 0.0033 0.0086 0.5003 0.0003 0.0002
LSq 4.0008 0.0008 0.0179 2.0033 0.0033 0.0086 0.5003 0.0003 0.0002

1.00 30 ML 4.0163 0.0163 0.2120 2.1333 0.1333 0.3086 1.0133 0.0133 0.0056
LSq 4.0181 0.0181 0.2113 2.1332 0.1332 0.3090 1.0149 0.0149 0.0062

50 ML 4.0004 0.0004 0.0454 2.0808 0.0808 0.1425 1.0084 0.0084 0.0025
LSq 4.0012 0.0012 0.0448 2.0807 0.0807 0.1424 1.0095 0.0095 0.0027

100 ML 3.9903 -0.0097 0.0398 2.0413 0.0413 0.0636 1.0036 0.0036 0.0014
LSq 3.9902 -0.0098 0.0398 2.0404 0.0404 0.0637 1.0043 0.0043 0.0014

200 ML 3.9978 -0.0022 0.0125 2.0100 0.0100 0.0137 1.0017 0.0017 0.0006
LSq 3.9979 -0.0021 0.0125 2.0103 0.0103 0.0137 1.0014 0.0014 0.0006

2.00 30 ML 4.0296 0.0296 0.1536 2.1908 0.1908 0.6677 2.0249 0.0249 0.0206
LSq 4.0440 0.0440 0.1859 2.1871 0.1871 0.6694 2.0276 0.0276 0.0219

50 ML 3.9930 -0.0070 0.0438 2.0927 0.0927 0.2209 2.0126 0.0126 0.0095
LSq 3.9937 -0.0063 0.0436 2.0908 0.0908 0.2225 2.0138 0.0138 0.0099

100 ML 3.9876 -0.0124 0.0250 2.0371 0.0371 0.0760 2.0054 0.0054 0.0046
LSq 3.9892 -0.0108 0.0221 2.0368 0.0368 0.0760 2.0061 0.0061 0.0046

200 ML 3.9912 -0.0088 0.0140 2.0192 0.0192 0.0337 2.0013 0.0013 0.0022
LSq 3.9915 -0.0085 0.0138 2.0194 0.0194 0.0337 2.0013 0.0013 0.0022
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Table 3: KS test results of the possible models for the coal mining disaster data set.

Model

APGR Rayleigh Generalized Rayleigh Exponential Weibull Gamma Log-Normal

KS 0.0370 0.4530 0.1531 0.1040 0.0464 0.0558 0.0742
p-value 0.9483 7.85E-35 2.36E-04 0.0340 0.7907 0.5753 0.2352

Table 4: Model comparison and parameter estimates for the coal mining disaster data set.

Model

APGR Weibull Gamma Log-Normal

Neg. Log-Lik. 1197.6 1198.6 1201.4 1204.2
AIC 2401.1 2401.2 2406.8 2412.3

ML Estimations α 0.0045 αW 184.8301 αG 0.7211 µLN 4.5286
β 0.4134 θW 0.7928 βG 295.9621 σLN 1.4772
λ 0.0007
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Figure 2: For the coal mining disaster data set, empirical and the �tted cdf with APGR distribution.
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famous life-time distributions such as Gamma, Weibull and Log-Normal. Further, by information from real
data application carried out using the coal mining disaster data set, it can be said that the APGR distribution
has displayedmore �exible datamodeling performance than the baseline distributions Generalized Rayleigh
and Rayleigh. Because while the APGR distribution is a suitable model for the coal mining disaster data set
according to the obtained results of theKS test statistic given inTable 3, theGeneralizedRayleighandRayleigh
distributions aren’t appropriate models. Therefore, it can be said that the APGR distribution has capable of
modeling more data types than the baseline distributions generalized Rayleigh and Rayleigh.
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A Appendix: Proof of Lemma 1
By using the power expansion formula, equation (11) can be written as
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and by applying the gamma function in the last equation, we have
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B Appendix: Calculation of the Rényi entropy of the APGR
distribution.

The Rényi entropy of the APGR distribution is

REX (ξ ) =
1

1 − ξ ln
∞∫
0
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Applying the power expansion formula, the equation (42) is written as

REX (ξ ) =
1

1 − ξ ln

(2βλ2 ln α
α − 1

)ξ ∞∫
0

(
xe−(λx)

2 (
1 − e−(λx)

2)β−1
α
(
1−e−(λx)

2)β)ξ dx
= 1
1 − ξ ln

(2βλ2 ln α
α − 1

)ξ ∞∫
0

(
xe−(λx)

2 (
1 − e−(λx)

2)β−1 ∞∑
i=0

(ln α)i
i!

(
1 − e−(λx)

2)iβ)ξ dx
= 1
1 − ξ ln

(2βλ2 ln α
α − 1

)ξ ∞∑
i=0

(ln α)i
i!

∞∫
0

(
xe−(λx)

2 (
1 − e−(λx)

2)β−1 (
1 − e−(λx)

2)iβ)ξ dx
= 1
1 − ξ ln

(2βλ2 ln α
α − 1

)ξ ∞∑
i=0

(ln α)i
i!

∞∫
0

(
xe−(λx)

2 (
1 − e−(λx)

2)β−1+iβ)ξ dx
= 1
1 − ξ ln

(2βλ2 ln αα − 1

)ξ ∞∑
i=0

(ln α)i
i!

∞∫
0

xe−(λx)2 β−1+iβ∑
j=0

(
β − 1 + iβ

j

)
(−1)j

(
e−(λx)

2)jξ
 dx

= 1
1 − ξ ln

(2βλ2 ln α
α − 1

)ξ ∞∑
i=0

(ln α)i
i!

β−1+iβ∑
j=0

(
β − 1 + iβ

j

)
(−1)j

∞∫
0

(
xe−(λx)

2 (
e−(λx)

2)j)ξ dx
= 1
1 − ξ ln

(2βλ2 ln α
α − 1

)ξ ∞∑
i=0

(ln α)i
i!

β−1+iβ∑
j=0

(
β − 1 + iβ

j

)
(−1)j

∞∫
0

xξ e−ξ (j+1)(λx)
2

 dx (43)

By applying the gamma function to equation (43), we have
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