```
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 68, Number 1, Pages 457-465 (2019)
DOI: 10.31801/cfsuasmas.429176
ISSN 1303-5991 E-ISSN 2618-6470
http://communications.science.ankara.edu.tr/index.php?series=A1
```


A NOTE ON STATISTICAL APPROXIMATION PROPERTIES OF COMPLEX Q-SZÁSZ- MIRAKJAN OPERATORS

DIDEM AYDIN ARI

Abstract

The complex q-Szász-Mirakjan operator attached to analytic functions satisfying a suitable exponential type growth condition has been studied in [14]. In this paper, we consider the A-statistical convergence of complex q-Szász- Mirakjan operator.

1. Introduction

In 1996, Phillips defined a generalization of the Bernstein operators called q Bernstein operators by using the q-binomial coefficients and the q-binomial theorem [21]. In 2008, Aral introduced q-Szász-Mirakjan operators and studied some approximation properties of them [12]. In 2008, Gal studied some approximation results of the complex Favard-Szász-Mirakjan operators on compact disks [17]. A different type complex q-Szász-Mirakjan operator was introduced by Mahmudov in [20] for $q>1$ as

$$
\begin{equation*}
M_{n, q}(f ; z)=\sum_{k=0}^{\infty} f\left(\frac{[k]}{[n]}\right) \frac{1}{q^{k(k-1) / 2}} \frac{[n]^{k} z^{k}}{[k]!} \varepsilon_{q}\left(-[n] q^{-k} z\right) \tag{1.1}
\end{equation*}
$$

for the functions which are continuous and bounded on $[0, \infty)$.
In this paper, we study some operators by taking statistical convergence instead of ordinary convergence. In 2002, Gadjiev and Orhan gave some approximation results by using statistical convergence [1]. And several authors have studied in approximation theory by using statistical convergence concept (see [3], 4] and [5] [6], [7], [8], 13], [19].

Now, we give some notations on q-analysis given in [16] and [21]. The q-integer $[n]$ is defined by

[^0]\[

\frac{1-q^{n}}{1-q}, q \neq 1

n, q=1
\end{array}\right.
\]

for $q>0$ and the q-factorial $[n]$! by

$$
[n]!:=\left\{\begin{array}{c}
{[1]_{q}[2]_{q} \ldots[n]_{q}, n=1,2, \ldots} \\
1, n=0
\end{array}\right.
$$

We give the following two q-analogues of the exponential function e^{x} which is appeared in the definition of the operator :

$$
\begin{align*}
& \varepsilon_{q}(x)=\sum_{n=0}^{\infty} \frac{1}{[n]_{q}!} x^{n}=\frac{1}{((1-q) x ; q)_{\infty}},|x|<\frac{1}{1-q},|q|<1 \tag{1.2}\\
& E_{q}(x)=\sum_{n=0}^{\infty} \frac{q^{\frac{n(n-1)}{2}}}{[n]_{q}!} x^{n}=(-(1-q) x ; q)_{\infty}, x \in R,|q|<1 \tag{1.3}
\end{align*}
$$

where $(x ; q)_{\infty}=\prod_{k=1}^{\infty}\left(1-x q^{k-1}\right)($ see [15] $)$.
It is clear from 1.2 and 1.3 that $\varepsilon_{q}(x) E_{q}(-x)=1$ and

$$
\lim _{q \rightarrow 1^{-}} \varepsilon_{q}(x)=\lim _{q \rightarrow 1^{-}} E_{q}(x)=e^{x}
$$

Let $q \in(0,1) \cup(1, \infty)$. The q-derivative of a function $f(x)$ is defined as

$$
\begin{gathered}
D_{q} f(x):=\frac{f(x)-f(q x)}{(1-q) x} \text { for }, x \neq 0 \\
D_{q} f(0)=\lim _{x \rightarrow 0} D_{q} f(x), \text { where } D_{q}^{0} f:=f, D_{q}^{n} f:=D_{q}\left(D_{q}^{n-1} f\right), n=1,2, \ldots
\end{gathered}
$$

As a consequence of the definition of $D_{q} f$, we find

$$
\begin{gathered}
D_{q} x^{n}=[n]_{q} x^{n-1}, \\
D_{q} \varepsilon_{q}(a x)=a \varepsilon_{q}(a x), \\
D_{q} E_{q}(a x)=a E_{q}(q a x) .
\end{gathered}
$$

Also the formula for the q-differential of a product is

$$
D_{q}(u(x) v(x))=D_{q}(u(x)) v(x)+u(q x) D_{q}(v(x))
$$

We know that

$$
\left(D_{q}(t ; x)_{q}^{n}\right)(t)=[n]_{q}(t ; x)_{q}^{n-1}
$$

where $(t ; x)_{q}^{n}=\prod_{k=0}^{n-1}\left(t-x q^{k}\right)$ (see [16]).
Now we define the complex Szász-Mirakjan operator based on q-integers.

Suppose that $R_{n, q}:=\frac{b_{n}}{[n](1-q)}$, where $\left(b_{n}\right)$ is a sequence of positive numbers such that $\lim _{n \rightarrow \infty} b_{n}=\infty$ and that $D_{R}=\{z \in \mathbb{C}:|z|<R\}, 1<R<R_{n, q}$. The complex Szász-Mirakjan operator based on q-integers is obtained directly from the real version (see [12]) by taking z in place of x, namely

$$
\begin{align*}
S_{n}^{q}(f ; z) & =S_{n}(f ; q ; z) \tag{1.4}\\
& =: E_{q}\left(-[n] \frac{z}{b_{n}}\right) \sum_{k=0}^{\infty} f\left(\frac{[k]}{[n]} b_{n}\right) \frac{([n] z)^{k}}{[k]!\left(b_{n}\right)^{k}},
\end{align*}
$$

where $n \in \mathbb{N}, 0<q<1$ and $f:[R, \infty) \cup \overline{D_{R}} \rightarrow \mathbb{C}$ has exponential growth and it has an analytical continuation into an open disk centered at the origin.

Throughout the paper we call the operator (1.4) as complex q-Szász-Mirakjan operator.

It is clear that by using divided differences $S_{n}^{q}(f ; z)$ can be expressed as

$$
\begin{equation*}
S_{n}^{q}(f ; z)=S_{n}(f, q, z)=\sum_{j=0}^{\infty} q^{\frac{j(j-1)}{2}} f\left[0, \frac{b_{n}[1]}{[n]}, \ldots, \frac{b_{n}[j]}{[n]}\right] z^{j} \tag{1.5}
\end{equation*}
$$

similar to the real version of the q-Szász-Mirakjan operators (see [12]), where $f\left[0, \frac{b_{n}[1]}{[n]}, \ldots, \frac{b_{n}[j]}{[n]}\right]$ denotes the divided difference of f on the knots $0, \frac{b_{n}[1]}{[n]}, \ldots, \frac{b_{n}[j]}{[n]}$.

2. Statistical Convergence of $S_{n}^{q_{n}}(f ; z)$

First of all, we recall some definitions and notations which we use in this study. Let $A=\left(a_{j n}\right)$ be a nonnegative regular matrix. The A-density of $K \subseteq \mathbb{N}$ given by

$$
\delta_{A}(K):=\lim _{j} \sum_{n \in K}^{\infty} a_{j n}
$$

whenever the limit exists. A sequence $x=\left(x_{n}\right)$ is called A-statistically convergent to a number L if for every $\varepsilon>0$,

$$
\begin{equation*}
\delta_{A}\left(\left\{n \in \mathbb{N}:\left|x_{n}-L\right| \geq \varepsilon\right\}\right)=0 \tag{2.1}
\end{equation*}
$$

It is not difficult to see that 2.1 is equivalent to

$$
\lim _{j \rightarrow \infty} \sum_{n:\left|x_{n}-L\right| \geq \varepsilon}^{\infty} a_{j n}=0, \text { for every } \varepsilon>0
$$

This limit expression is denoted by $s t_{A}-\lim x_{n}=L$ (see in [2], [9, [10, [11]).
Now, we give a lemma which we use in the proof of Theorem 1.
Lemma 1. Let $D_{R}=\{z \in \mathbb{C}:|z|<R\}, 1<R<R_{n, q}$, where
$R_{n, q}=\frac{b_{n}}{[n]_{q}(1-q)}$ and

$$
f:[R, \infty) \cup \overline{D_{R}} \rightarrow \mathbb{C}
$$

be continuous in $[R, \infty) \cup \overline{D_{R}}$, analytic in D_{R}, namely $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ for all $z \in D_{R}$ and there exist $M, C, B>0$ and $A \in\left(\frac{1}{R}, 1\right)$, with the property $\left|c_{k}\right| \leq \frac{M A^{k}}{k!}$ for all $k=0,1, \ldots$ (which implies $|f(z)| \leq M e^{A|z|}$ for all $z \in D_{R}$ and $|f(x)| \leq C e^{B x}$ for all $x \in[R, \infty)$). Then $S_{n}^{q}(f ; z)$ is well defined and analytic as function of z in D_{R} (see [14]).

Theorem 1. Suppose that the conditions of Lemma 1 are satisfied. Suppose also that A be a nonnegative regular summability matrix, $q=q_{n}$ is a sequence such that $0<q_{n}<1$ and $s t_{A}-\lim q_{n}=1$ and $s t_{A}-\lim \frac{b_{n}}{[n]_{q_{n}}}=0$.
i. Let $1 \leq r<\frac{1}{B}$ be arbitrary fixed. Then for all $|z| \leq r$, we have

$$
s t_{A}-\lim \left|S_{n}^{q_{n}}(f ; z)-f(z)\right|=0 .
$$

ii. For the simultaneous approximation by complex q-Szász-Mirakjan operator, we have

$$
s t_{A}-\lim \left|D_{q_{n}}^{(p)}\left(S_{n}^{q_{n}}(f ; z)\right)-D_{q_{n}}^{(p)} f(z)\right|=0
$$

where $C_{r_{1}, A}$ is given as in the case (i).
Proof. i. From [14, by taking $e_{k}(z)=z^{k}$, it is clear that $T_{n, k}(z):=S_{n}^{q_{n}}\left(e_{k} ; z\right)$ is a polynomial of degree $\leq k, k=0,1,2, \ldots$ and

$$
T_{n, 0}(z)=1, T_{n, 1}(z)=z \text { for all } z \in \mathbb{C}
$$

Also, using q-derivative of $T_{n, k}(z)$ for $z \neq 0$, we get

$$
\begin{align*}
& D_{q} T_{n, k}(z) \\
= & \frac{[n]_{q_{n}}}{z b_{n}} T_{n, k+1}(z) \\
& -\frac{[n]_{q_{n}}}{b_{n}} E_{q}\left(-[n]_{q_{n}} q_{n} \frac{z}{b_{n}}\right) \sum_{j=0}^{\infty}\left(\frac{[j]_{q_{n}}}{[n]_{q_{n}}} b_{n}\right)^{k} \frac{\left([n]_{q_{n}} q_{n} z\right)^{j}}{[j]_{q_{n}}!\left(b_{n}\right)^{j}} \tag{2.2}
\end{align*}
$$

for all $z \in \mathbb{C}, k=0,1,2, \ldots$ Therefore, we obtain

$$
T_{n, k}(z)=z T_{n, k-1}\left(q_{n} z\right)+\frac{z b_{n}}{[n]_{q_{n}}} D_{q}\left(T_{n, k-1}(z)\right)
$$

The last equality implies that

$$
\begin{align*}
& T_{n, k}(z)-z^{k} \\
= & \frac{z b_{n}}{[n]_{q_{n}}} D_{q}\left(T_{n, k-1}(z)-z^{k-1}\right)+z\left[T_{n, k-1}\left(q_{n} z\right)-\left(q_{n} z\right)^{k-1}\right] \\
& +\frac{[k-1]_{q_{n}}}{[n]_{q_{n}}} b_{n} z^{k-1}-z^{k}\left(1-q_{n}\right)[k-1]_{q_{n}} . \tag{2.3}
\end{align*}
$$

From the Bernstein inequality in $\overline{D_{r}}=\{z \in \mathbb{C}:|z| \leq r\}$, we have

$$
\begin{equation*}
\left\lvert\, D_{q}\left(P_{k}(z) \left\lvert\, \leq\left\|P_{k}^{\prime}\right\| \leq \frac{k}{r}\left\|P_{k}\right\|_{r}\right.\right.\right. \tag{2.4}
\end{equation*}
$$

where $\|\cdot\|_{r}=\max _{z \in \overline{D_{r}}}|f(z)|$ (see [18, p. 55]). From $\sqrt[2.3]{ }$) and $\sqrt{2.4}$, we obtain that

$$
\begin{aligned}
& \left|T_{n, k}(z)-z^{k}\right| \\
\leq & \frac{r b_{n}}{[n]_{q_{n}}}\left\|T_{n, k-1}(z)-z^{k-1}\right\|_{r} \frac{k-1}{r} \\
& +r\left|T_{n, k-1}\left(q_{n} z\right)-\left(q_{n} z\right)^{k-1}\right|+r^{k-1} \frac{[k-1]_{q_{n}}}{[n]_{q_{n}}} b_{n}+r^{k}[k-1]_{q_{n}}\left|1-q_{n}\right|
\end{aligned}
$$

By passing to norm we reach to

$$
\begin{aligned}
& \left\|T_{n, k}(z)-z^{k}\right\|_{r} \\
\leq & \left(\frac{(k-1) b_{n}}{[n]_{q_{n}}}+r\right)\left\|T_{n, k-1}(z)-z^{k-1}\right\|_{r}+r^{k} k\left(1-q_{n}+\frac{b_{n}}{[n]_{q_{n}}}\right) .
\end{aligned}
$$

By using mathematical induction with respect to k, the above recurrence formula gives that

$$
\left\|T_{n, k}(z)-z^{k}\right\|_{r} \leq \frac{(k+1)!r^{k}}{2}\left(1-q_{n}+\frac{b_{n}}{[n]_{q_{n}}}\right)
$$

for all $k \geq 2$ and fixed an arbitrary $n \geq n_{0}$. There exists an n_{0} such that for all $n>n_{0}$, then $\frac{b_{n}}{[n]_{q_{n}}}<1$. Assume that it is true for k. Since $[k]_{q_{n}} \leq(k+1)$ is satisfied for all $0<q_{n}<1$, the recurrence formula reduces to

$$
\begin{aligned}
& \left\|T_{n, k+1}(z)-z^{k+1}\right\|_{r} \\
\leq & \left(1-q_{n}+\frac{b_{n}}{[n]_{q_{n}}}\right) \frac{r^{k+1}}{2}\left\{(k+1)!k \frac{b_{n}}{[n]_{q_{n}}}+(k+1)!+2(k+1)\right\}
\end{aligned}
$$

for all $k \geq 2$ and for all $n>n_{0}$. By this inequality, it follows

$$
\left\|T_{n, k+1}(z)-z^{k+1}\right\|_{r} \leq \frac{(k+2)!}{2} r^{k+1}\left(1-q_{n}+\frac{b_{n}}{[n]_{q_{n}}}\right)
$$

for $k \geq 2$ and for all $n>n_{0}$.
Now, we show that

$$
\begin{equation*}
S_{n}^{q_{n}}(f ; z)=\sum_{k=0}^{\infty} c_{k} S_{n}^{q_{n}}\left(e_{k} ; z\right)=\sum_{k=0}^{\infty} c_{k} T_{n, k}(z) \tag{2.5}
\end{equation*}
$$

for all $z \in D_{R}$. For any $m \in \mathbb{N}$, let us define

$$
f_{m}(z)=\sum_{j=0}^{m} c_{j} z^{j} \text { if }|z| \leq r<R \text { and } f_{m}(x)=f(x) \text { if } x \in(r, \infty)
$$

From the hypothesis on f, it is clear that for any $m \in \mathbb{N},\left|f_{m}(x)\right| \leq C_{m} e^{B_{m} x}$ for all $x \in[0, \infty)$. Ratio test implies that for each fixed $m, n \in \mathbb{N}$ and z,

$$
\left|S_{n}^{q_{n}}\left(f_{m} ; z\right)\right| \leq C_{m}\left|E_{q}\left(-[n]_{q_{n}} \frac{z}{b_{n}}\right)\right| \sum_{k=0}^{\infty} \frac{\left([n]_{q_{n}}\right)^{k}|z|^{k}}{[k]_{q_{n}}!\left(b_{n}\right)^{k}} e^{B_{m}\left(\frac{[k]_{q_{n}}}{[n]_{q_{n}}} b_{n}\right)}<\infty
$$

Therefore, $S_{n}^{q_{n}}\left(f_{m} ; z\right)$ is well defined. Now, we set

$$
f_{m, k}(z)=c_{k} e_{k}(z) \text { if }|z| \leq r \text { and } f_{m, k}(x)=\frac{f(x)}{m+1} \text { if } x \in(r, \infty)
$$

It is clear that each $f_{m, k}$ is of exponential growth on $[0, \infty)$ and that

$$
f_{m}(z)=\sum_{k=0}^{m} f_{m, k}(z)
$$

Since $S_{n}^{q_{n}}$ is linear, we have

$$
S_{n}^{q_{n}}\left(f_{m} ; z\right)=\sum_{k=0}^{m} c_{k} S_{n}^{q_{n}}\left(e_{k} ; z\right) \text { for all }|z| \leq r
$$

which proves that

$$
\lim _{m \rightarrow \infty} S_{n}^{q_{n}}\left(f_{m} ; z\right)=S_{n}^{q_{n}}(f ; z)
$$

for any fixed $n \in \mathbb{N}$ and $|z| \leq r$. But this is immediate from

$$
\lim _{m \rightarrow \infty}\left\|f_{m}-f\right\|_{r}=0
$$

and from the inequality

$$
\begin{aligned}
\left|S_{n}^{q_{n}}\left(f_{m}\right)-S_{n}^{q_{n}}(f)\right| & \leq\left|E_{q}\left(-[n]_{q_{n}} \frac{z}{b_{n}}\right)\right| \varepsilon_{q}\left([n]_{q_{n}} \frac{|z|}{b_{n}}\right)\left\|f_{m}-f\right\|_{r} \\
& \leq M_{r, n}\left\|f_{m}-f\right\|_{r}
\end{aligned}
$$

for all $|z| \leq r$. Consequently the statement $\sqrt{2.5}$ is satisfied.
In this way, from the hypothesis on c_{k}, this implies for all $|z| \leq r$

$$
\begin{align*}
& \left|S_{n}^{q_{n}}(f ; z)-f(z)\right| \\
\leq & \left(1-q_{n}+\frac{b_{n}}{[n]_{q_{n}}}\right) C_{r, B}, \tag{2.6}
\end{align*}
$$

where

$$
C_{r, B}=\frac{M A}{2} \sum_{k=2}^{\infty}(k+1)(r A)^{k-1}
$$

is finite for all $1 \leq r<\frac{1}{B}$. Note that the series $\sum_{k=2}^{\infty} u^{k+1}$ and its derivative $\sum_{k=2}^{\infty}(k+1) u^{k}$ are uniformly and absolutely convergent in any compact disk included in the open unit disk.

As $s t_{A}-\lim q_{n}=1$ there exists $n_{1}(\varepsilon)$ and $K_{1} \subseteq \mathbb{N}$ of density 1 such that $1-q_{n}<\varepsilon$ for all $n \in K_{1}$ and $n>n_{1}(\varepsilon)$. On the other hand, since $s t_{A}-\lim \frac{b_{n}}{[n]_{q_{n}}}=0$ there exists $n_{2}(\varepsilon)$ and $K_{2} \subseteq \mathbb{N}$ of density 1 such that $\frac{b_{n}}{[n]_{q_{n}}}<\varepsilon$ for all $n \in K_{2}$ and $n>n_{2}(\varepsilon)$. Now define $K=K_{1} \cap K_{2}$. Note that $\delta_{A}\left(K_{1} \cap K_{2}\right)=1$ and for all $\varepsilon>0$ and for all $n>n_{0}(\varepsilon)=\max \left\{n_{1}, n_{2}\right\}$

$$
\begin{equation*}
1-q_{n}+\frac{b_{n}}{[n]_{q_{n}}}<\varepsilon \tag{2.7}
\end{equation*}
$$

Hence 2.7) and 2.6 imply that

$$
s t_{A}-\lim \left|S_{n}^{q_{n}}(f ; z)-f(z)\right|=0 .
$$

ii. Let γ be the circle of radius $r_{1}>r$ with centered 0 , since for any $|z| \leq r$ and $v \in \gamma$, we have $|v-z| \geq r_{1}-r$, by Cauchy's formulas it follows that for all $|z| \leq r$ and $n \in \mathbb{N}$

$$
\begin{aligned}
\left|D_{q_{n}}^{(p)}\left(S_{n}^{q n}(f ; z)\right)-D_{q_{n}}^{(p)} f(z)\right| & \leq\left|S_{n}^{q_{n}^{(p)}}(f ; z)-f^{(p)}(z)\right| \\
& =\frac{p!}{2 \pi}\left|\int_{\gamma} \frac{S_{n}^{q_{n}}(f ; v)-f(v)}{(v-z)^{p+1}} d v\right| \\
& \leq\left(1-q_{n}+\frac{b_{n}}{[n]_{q_{n}}}\right) C_{r_{1}, B} \frac{p!}{2 \pi} \frac{2 \pi r_{1}}{\left(r_{1}-r\right)^{p+1}} \\
& =\left(1-q_{n}+\frac{b_{n}}{[n]_{q_{n}}}\right) C_{r_{1}, B} \frac{p!r_{1}}{\left(r_{1}-r\right)^{p+1}} .
\end{aligned}
$$

Similarly we get from hypothesis that for all $\varepsilon>0$ there exists a subset $K \subseteq \mathbb{N}$ of density 1 and $n_{0}=n_{0}(\varepsilon)$ such that $\left|D_{q_{n}}^{(p)}\left(S_{n}^{q n}(f ; z)\right)-D_{q_{n}}^{(p)} f(z)\right|<\varepsilon$ for all $n>n_{0}$ and $n \in K$.

Remark 1. Consider the matrix method $C=\left(c_{j n}\right)$ which is called Cesåro matrix and defined as

$$
c_{j n}=\left\{\begin{array}{l}
\frac{1}{j}, \quad n \leq j \\
0, \quad \text { otherwise }
\end{array} .\right.
$$

In this case A-statistical convergence reduces to statistical convergence. Now define a sequence $q=\left(q_{n}\right)$ as

$$
q_{n}=\left\{\begin{array}{cc}
\frac{1}{n}, & n=m^{2}(m \in \mathbb{N}) \\
\frac{n}{n+1}, & \text { otherwise }
\end{array} .\right.
$$

It is obvious that q is not convergent but it is statistically convergent to 1.

Remark 2. Let d_{n} be a sequence of positive numbers such that $d_{n} \rightarrow \infty$ and $\frac{d_{n}}{[n]_{q_{n}}} \rightarrow 0$ as $n \rightarrow \infty$. Note that the sequence defined as

$$
b_{n}=\left\{\begin{array}{cc}
n, & n=m^{2}(m \in \mathbb{N}) \\
d_{n}, & \text { otherwise }
\end{array}\right.
$$

$\left(\frac{b_{n}}{[n]_{q_{n}}}\right)$ is statistically convergent to zero.
Note that these examples do not satisfy the hypothesis of Theorem 2.3 in [14], but they satisfy the hypothesis of our theorem.

Remark 3. If we take $A=I$ identity matrix, we get ordinary convergence. Therefore when we take $A=I$, we have Theorem 2.3 in (14].

References

[1] Gadjiev A.D. and Orhan, C., Some approximation theorems via statistical convergence, Rocky Mt. J. Math., vol. 32, no. 1, pp. 129-138, 2002.
[2] Connor, J. S., On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198.
[3] Duman O. and Orhan, C., Statistical Approximation in the space of locally integrable functions, Publ. Math., vol.63, no. 1-2, pp. 133-144, 2003.
[4] Duman O. and Orhan, C., Rates of a-statistical convergence of operators in the space of locally integrable functions, Appl. Math. Lett., vol.21, no.5, pp.431-435, 2008.
[5] Dirik, F., Duman O. and Demirci, K., Approximation in statistical sense to B-continuous functions by positive linear operators, Studia Scientiarum Mathematicarum Hungarica 47 (2010) 289-298.
[6] Erkuş E. and Duman, O., A Korovkin type approximation theorem in statistical sense, Studia Sci. Math. Hungarica 43 (2006), 285-294.
[7] Sakaoğlu İ. and Ünver, M., Statistical Approximation for multivariable integrable functions, Miskolc Math. Notes, vol.13, no.2, pp. 485-491, 2012.
[8] Duman, O., Özarslan M.A. and Doğru, O., On integral type generalizations of positive linear operators, Studia Math. 174 (2006), 1-12.
[9] Freedman A. R. and Sember, J. J., Densities and summability , Pacific J. Math. 95 (1981), 293-3005.
[10] Fast, H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
[11] Miller, H. I., A measure theorretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811-1819.
[12] Aral, A., A generalization of Szász-Mirakjan operators based on q - integer, Mathematical and Computer Modelling 47, (2008), 1052-1062.
[13] Aral A. and Duman, O., A Voronovskaya-type formula for SMK operators via statistical convergence, Mathematica Slovaca 61 (2011) 235-244
[14] Aydın, D., On Complex q-Szàsz-Mirakjan Operators Commun. Fac.Sci. Univ. Ank. Series A1. Volume 61, Number 2, (2012), 51-66.
[15] Gasper, G. and Rahman, M., Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[16] Ernst, T., The history of q-calculus and a new method, U.U.D.M Report 2000, 16, Department of Mathematics, Upsala University.
[17] Gal, S. G., Approximation and geometric properties of complex Favard-Szász-Mirakjan operators in compact diks, Comput. Math. Appl., 56, (2008), 1121-1127.
[18] Gal, S. G., Approximation by Complex Bernstein and Convolution Type Operators, World Scientific Publishing Co, USA, 2009.
[19] Söylemez, D. and Unver, M., Korovkin Type Theorems for Cheney-Sharma Operators via Summability Methods, Results in Mathematics, Volume 72, (2017),1601-1612.
[20] Mahmudov, N. I., Approximation properties of complex q-Szász-Mirakjan operators in compact disks. Computers \mathcal{G} Mathematics with Applications, (2010), 1784-1791.
[21] Phillips, G. M., Interpolation and Approximation by Polynomials, Springer-Verlag, 2003.
Current address: Kırıkkale Universty Faculty of Arts and Sciences, Department of Mathematics, Yahşihan,Kırıkkale Turkey

E-mail address: didemaydn@hotmail.com
ORCID Address: http://orcid.org/0000-0002-5527-8232

[^0]: Received by the editors: December 13, 2017; Accepted: January 31, 2018.
 2010 Mathematics Subject Classification. 40A35, 30E10.
 Key words and phrases. A-Statistical approximation, complex q-Szász- Mirakjan operators, q-exponential functions, q-derivative.

