Öğrenci performansının veri madenciliği ile belirlenmesi
Özet
Gelişen teknoloji ile birlikte yüz yüze eğitime alternatif olarak elektronik ortamlarda öğrenme giderek yaygınlaşmaktadır. Eğitim sektöründe çeşitli alanlarda Web'e dayalı öğrenme ortamları oluşturulmaktadır. Yükseköğretim kurumları da teknolojiyi yakından takip eden ve her türlü yeniliğe açık kurumlar olarak göze çarpmaktadır. Eğitim-öğretimde çok yeni olan Web'e dayalı uzaktan eğitim üniversitelerimizin çeşitli bölüm ve programlarında kullanılmaktadır. Tamamen uzaktan eğitim veren bölümler olduğu gibi sadece birkaç dersi uzaktan eğitim yolu ile veren bölümlerde bulunmaktadır. Bu tez çalışmasında Kırıkkale Üniversitesinde okuyan, birinci sınıf öğrencilerinin ENF-101 kodlu Temel Bilgi Teknolojileri Kullanımı dersi için akademik performansları incelenmiştir. İnceleme dersi geleneksel bir yöntem olan yüz yüze eğitim ile alan öğrenciler ile yeni bir yöntem olan uzaktan eğitim ile alan 672 öğrenciye ait veriler veri madenciliği sınıflandırma algoritmaları ile incelenmiştir. Sonuçlara göre karar ağacı oluşturularak öğrenci başarısına etki eden faktörler belirlenmiştir. Bu çalışma ile veri madenciliği teknikleri kullanılarak yükseköğretim kurumlarında eğitim yöntemlerinin başarıya olan etkisi hakkında hem üniversite yönetimine hem de öğrencilere faydalı bilgiler verebileceği ortaya konulmuştur. With improving technology as an alternative to face to face education electronic learning environments is increasingly common. Education sector in various areas of the Web 'e-based learning environments are created. Higher education institutions also closely follow and all kinds of technology innovation is observed as public institutions. In education who are very new to the Web 'e-based distance education universities are used in various departments and programs. As part of providing distance education entirely in just a few courses through distance education department, which is located in. In this thesis, studying in Kırıkkale University, of first class students ENF-101 coded courses Fundamentals of Information Technology Usage for academic performance were examined. Review of the course, which is a traditional method of face to face training and distance education students taking the field with the new method, the data of 672 students were examined by the data mining classification algorithms. According to the results of a decision tree forming factors have been identified that affect student achievement. In this study, using data mining techniques to success in higher education institutions about the impact of the training methods and provide useful information to the university administration and the student was revealed.