dc.contributor.author | Anastassiou G.A. | |
dc.contributor.author | Aral A. | |
dc.date.accessioned | 2020-06-25T15:14:30Z | |
dc.date.available | 2020-06-25T15:14:30Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 04201213 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12587/2128 | |
dc.description.abstract | In this paper, we introduce a generalization of Gauss-Weierstrass operators based on q-integers using the q-integral and we call them q-Gauss-Weierstrass integral operators. For these operators, we obtain a convergence property in a weighted function space using Korovkin theory. Then we estimate the rate of convergence of these operators in terms of a weighted modulus of continuity. We also prove optimal global smoothness preservation property of these operators. © 2010 Warsaw University. All rights reserved. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Walter de Gruyter GmbH | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Gauss-Weierstrass operators | en_US |
dc.subject | Q-derivative | en_US |
dc.subject | Q-integral | en_US |
dc.subject | Qexponential functions | en_US |
dc.subject | Weighted approximation | en_US |
dc.title | On gauss-weierstrass type integral operators | en_US |
dc.type | article | en_US |
dc.contributor.department | Kırıkkale Üniversitesi | en_US |
dc.identifier.volume | 43 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 841 | en_US |
dc.identifier.endpage | 849 | en_US |
dc.relation.journal | Demonstratio Mathematica | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |