dc.contributor.author | Yilmaz B. | |
dc.contributor.author | Aral A. | |
dc.contributor.author | Başcanbaz-Tunca G. | |
dc.date.accessioned | 2020-06-25T15:14:38Z | |
dc.date.available | 2020-06-25T15:14:38Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 15211398 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12587/2161 | |
dc.description.abstract | In this work, we continue the study of generalized Picard operator P?,? ([2]) depending on nonisotropic ?-distance, in the direction of weighted approximation process. For this purpose, we first define weighted n-dimensional Lp space by involving weight depending on nonisotropic distance. Then we introduce a new weighted ?-Lebesgue point depending on nonisotropic distance and study pointwise approximation of ?,? to the unit operator at these points. Also, we compare the order of convergence at the weighted ?-Lebesgue point with the order of convergence of the operators to the unit operator. Finally, we show that this type of convergence also occurs with respect to nonisotropic weighted norm. © 2011 EUDOXUS PRESS, LLCAll rights reserved. | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Generalized Picard singular integral | en_US |
dc.subject | Lebesgue point | en_US |
dc.subject | Nonisotropic distance | en_US |
dc.title | Weighted approximation properties of generalized Picard operators | en_US |
dc.type | article | en_US |
dc.contributor.department | Kırıkkale Üniversitesi | en_US |
dc.identifier.volume | 13 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 499 | en_US |
dc.identifier.endpage | 513 | en_US |
dc.relation.journal | Journal of Computational Analysis and Applications | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |