Unilateral lag-screw technique for an isolated anterior 1/4 atlas fracture
Citation
Keskil, S., Göksel, M., & Yüksel, U. (2016). Unilateral lag-screw technique for an isolated anterior 1/4 atlas fracture. Journal of craniovertebral junction & spine, 7(1), 50–54.Abstract
Study Design: Fractures of the atlas are classified based on the fracture location and associated ligamentous injury. Among patients with atlas fractures treated using external immobilization, nonunion of the fracture could be seen. Objective: Ideally, treatment strategy for an unstable atlas fracture would involve limited fixation to maintain the fracture fragments in a reduced position without restricting the range of motion (ROM) of the atlantoaxial and atlantooccipital joints. Summary of Background Data: Such a result can be established using either transoral limited internal fixation or limited posterior lateral mass fixation. However, due to high infection risk and technical difficulty, posterior approaches are preferred but none of these techniques can fully address anterior 1/4 atlas fractures such as in this case. Materials and Methods: A novel open and direct technique in which a unilateral lag screw was placed to reduce and stabilize a progressively widening isolated right-sided anterior 1/4 single fracture of C 1 that was initially treated with a rigid cervical collar is described. Results: Radiological studies made after the surgery showed no implant failure, good cervical alignment, and good reduction with fusion of C 1 . Conclusions: It is suggested that isolated C 1 fractures can be surgically reduced and immobilized using a lateral compression screw to allow union and maintain both C 1-0 and C 1-2 motions, and in our knowledge this is the first description of the use of a lag screw to achieve reduction of distracted anterior 1/4 fracture fragments of the C1 from a posterior approach. This technique has the potential to become a valuable adjunct to the surgeons armamentarium, in our opinion, only for fractures with distracted or comminuted fragments whose alignment would not be expected to significantly change with classical lateral mass screw reduction.