Yazar "Çelik, Mehmet" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Assessment of trade-off, exergetic performance, and greenhouse gas impact-cost analysis of a diesel engine running with different proportions of TiO2, Ag2O, and CeO2 nanoadditives(Pergamon-Elsevier Science Ltd, 2024) Gülcan, Halil Erdi; Erol, Derviş; Çelik, Mehmet; Bayındırlı, CihanIn this study, the effects of adding different proportions of TiO2, Ag2O, and CeO2 nanoparticles to a threecylinder, water-cooled, four-stroke, direct injection diesel engine on engine performance and exhaust emissions are experimentally investigated. The experiments are conducted at four different engine loads (10, 20, 30, and 40 Nm) and a constant engine speed (1800 rpm). TiO2, Ag2O, and CeO2 nanoparticles are added to the diesel fuel at concentrations of 50 and 75 ppm each. The test fuels used in the study are as follows: D100, DTi50, DTi75, DAg50, DAg75, DCe50 and DCe75. Using the experimental results, analyses of energy, exergy, sustainability, greenhouse gas (GHG) emission impact, and cost are performed. The experimental results reveal that the use of nanoparticles in diesel fuel reduces BSFC. The highest reduction in BSFC is achieved with DTi75 fuel, averaging 9 %. Additionally, DTi75 fuel shows an average increase of 19 % in NOx emissions compared to D100 fuel, while smoke emissions decrease by an average of 30 %. The highest average increase in exergy efficiency compared to D100 fuel is obtained with DAg50 fuel (5.6 %), followed by DTi75 fuel (5.3 %). The addition of nanoparticles to diesel fuel also leads to an increase in GHG emissions. Compared to D100 fuel, the highest average contribution to GHG emissions increase is shown by DTi75 fuel (12 %), while the lowest average contribution is observed with DAg50 fuel (4 %).Öğe Role of different type nanoparticles on exergy, thermoeconomic, exergoeconomic, environmental, and enviroeconomic indicators in a CI engine fueled with rapeseed oil biodiesel(Elsevier Ltd, 2025) Erdi Gülcan, Halil; Bayindirli, Cihan; Erol, Derviş; Çelik, MehmetThis present study conducts energy, exergy, thermoeconomic, exergoeconomic, environmental, and enviroeconomic analyses for a CI engine fuelled with rapeseed oil biodiesel that includes varying proportions of TiO2, Ag2O, and CeO2 nanoparticles. Experiments are performed on four different engine torques (between 10 Nm and 40 Nm engine torque ranges) and 1800 1/min shaft speed. The addition of nanoparticles to 100 % rapeseed oil biodiesel (R100) fuel positively impacts energy, exergy, thermoeconomic, and exergoeconomic results. Among all the test fuels, the best energy, exergy, thermoeconomic, and exergoeconomic performance results are obtained with the R + Ti75 fuel containing 75 ppm TiO2, followed by the R + Ce75 and R + Ti50 fuels. The R + Ti75 and R + Ce75 fuels reduce exergy destruction by an average of 7 % and 5.5 % respectively compared to the R100 fuel, while increasing exergy efficiency by an average of 5 % and 4 %. Additionally, the maximum reduction in capital cost (reduction in thermoeconomic impact) is achieved with the R + Ti75 fuel, with an average reduction of approximately 12 %. On the other hand, the lowest environmental impact is obtained with the R100 fuel, while the highest environmental impact is observed with the R + Ti75 and R + Ce75 fuels. In conclusion, the most efficient blends in terms of energy, exergy, thermoeconomic, and exergoeconomic aspects are the R + Ti75 and R + Ce75 fuels. © 2024