Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Abbas, Mujahid" seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Common fixed point of g-approximative multivalued mapping in partially ordered metric space
    (Univ Nis, Fac Sci Math, 2013) Abbas, Mujahid; Erduran, Ali
    In this paper, we introduce g-approximative multivalued mappings. Based on this definition, we gave some new definitions. Further, common fixed point results for g-approximative multivalued mappings satisfying generalized contractive conditions are obtained in the setup of ordered metric spaces. Our results generalize Theorems 2.6-2.9 given in ([1]).
  • Yükleniyor...
    Küçük Resim
    Öğe
    Common Fixed Point Result In Ordered Cone Metric Spaces
    (Hacettepe Univ, Fac Sci, 2013) Abbas, Mujahid; Altun, Ishak
    Fixed point and common fixed point results for generlized contractive mappings are obtianed in ordered cone metric spaces.
  • [ X ]
    Öğe
    Common fixed point theorems for non compatible mappings in fuzzy metric spaces
    (Int Center Scientific Research & Studies, 2009) Abbas, Mujahid; Altun, Ishak; Gopal, Dhananjay
    Common fixed point theorems for the class of four non compatible mappings in fuzzy metric spaces are proved. These results are proved without exploiting the notion of continuity and without imposing any condition on t-norm.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Common fixed points of Ciric-type contractions on partial metric spaces
    (Kossuth Lajos Tudomanyegyetem, 2013) Abbas, Mujahid; Altun, İshak; Romaguera, Salvador
    We obtain a common fixed point theorem of Boyd-Wong type for four mappings satisfying a Ciric-type contraction on a complete partial metric space. Our result generalizes and unifies, among others, the very recent results of L. CIRIC, B. SAMET, H. AYDI and C. VETRO [Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218 (2011), 2398-2406], S. ROMAGUERA [Fixed point theorems for generalized contractions on partial metric spaces, Topology Appl., 159 (2012), 194-199], T. ABDELJAWAD, E. KARAPINAR and K. TAS [Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011), 1900-1904], and D. ILIC, V. PAVLOVIC and V. RAKOCEVIC [Some new extensions of Banach's contraction principle to partial metric space, Appl. Math. Lett. 24 (2011), 1326-1330].
  • Yükleniyor...
    Küçük Resim
    Öğe
    A Fixed point theorem on cone metric spaces with new type contractivity
    (Duke Univ Press, 2011) Altun, Ishak; Abbas, Mujahid; Simsek, Hakan
    In the present work, a common fixed point theorem for self maps on cone metric spaces is proved. Also two examples, which shows that our main theorem is generalized version of main theorems of [A. Branciari, Int. J. Math. Math. Sci., 29 (2002), no. 9, 531-536] and [L.G. Huang and X. Zhang, J. Math. Anal. Appl. 332 (2007), no. 2, 1468 1476], are given.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Fixed point theory for Suzuki type (θ,L)-weak multivalued operators
    (House Book Science-Casa Cartii Stiinta, 2015) Erduran, Ali; Abbas, Mujahid
    Existence of a fixed point of Suzuki type (theta, L)- weak multivalued operator is obtained. As an application, we obtain homotopy and data dependence results for Suzuki type contractive multivalued operator. Our results complement and extend some very recent comparable results in the existing literature.

| Kırıkkale Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kırıkkale Üniversitesi, Kırıkkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim