Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Al-Saedi, Doaa Khalid Abdulridha" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Skin lesion classification by weighted ensemble deep learning
    (Springer International Publishing, 2024) Al-Saedi, Doaa Khalid Abdulridha; Savaş, Serkan
    Skin cancer represents a significant global health threat with potentially fatal consequences if left undiagnosed. Early detection is crucial for successful patient treatment, yet accurate identification of skin lesions poses a challenge even for experienced dermatologists. In this context, the development of computer-aided skin lesion classification systems emerges as a promising path to empower dermatologists with the potential for earlier diagnoses and more effective treatment interventions. This study proposes a two-stage approach for early detection of skin cancer. Firstly, eight pre-trained deep architectures were tested on the ISIC dataset using transfer learning and fine-tuning. Secondly, three successful models with the highest accuracy were chosen, and ensemble learning was employed to obtain a final result. The ensemble learning method outperformed individual models, achieving a remarkable ROC AUC rate of 99.96%. DenseNet121 exhibited the highest performance among the individual models, with accuracy rates of 99.75%, 98.2%, and 99.6% for the train, validation, and test datasets, respectively. The promising results hold significant potential for early detection and treatment of skin cancer, a prevalent global disease. These findings could prove invaluable for clinics, offering valuable support to their decision-making processes and enhancing their ability to combat this widespread health concern. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.

| Kırıkkale Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kırıkkale Üniversitesi, Kırıkkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim