Yazar "Argun, Mustafa Şamil" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Non-Destructive Prediction of Bread Staling Using Artificial Intelligence Methods(2023) Argun, Mustafa Şamil; Türk, Fuat; Kurt, AbdullahIn foods with limited shelf life and in new product development studies, it is important for producers and consumers to estimate the degree of staling with easy methods. Staling of bread, which has an essential role in human nutrition, is an important physicochemical phenomenon that affects consumer preference. Costly technologies, such as rheological, thermal, and spectroscopic approaches, are used to determine the degree of staling. This research suggests that an artificial intelligence-based method is more practical and less expensive than these methods. Using machine learning and deep learning algorithms, it was attempted to predict how many days old breads are, which provides information on the freshness status and degree of staling, from photos of whole bread and pieces of bread. Among the machine learning algorithms, the highest accuracy rate for slices of bread was calculated as 62.84% with Random Forest, while the prediction accuracy was lower for all bread images. The training accuracy rate for both slice and whole bread was determined to be 99% when using the convolutional neural network (CNN) architecture. While the test results for whole breads were around 56.6%, those for sliced breads were 92.3%. The results of deep learning algorithms were superior to those of machine learning algorithms. The results indicate that crumb images reflect staling more accurately than whole bread images.Öğe U2-Net Segmentation And Multi-Label Cnn Classification Of Wheat Varieties(Konya Teknik Univ, 2024) Argun, Mustafa Şamil; Türk, Fuat; Civelek, ZaferThere are many varieties of wheat grown around the world. In addition, they have different physiological states such as vitreous and yellow berry. These reasons make it difficult to classify wheat by experts. In this study, a workflow was carried out for both segmentation of wheat according to its vitreous/yellow berry grain status and classification according to variety. Unlike previous studies, automatic segmentation of wheat images was carried out with the U2-NET architecture. Thus, roughness and shadows on the image are minimized. This increased the level of success in classification. The newly proposed CNN architecture is run in two stages. In the first stage, wheat was sorted as vitreous-yellow berry. In the second stage, these separated wheats were grouped by multi-label classification. Experimental results showed that the accuracy for binary classification was 98.71% and the multi-label classification average accuracy was 89.5%. The results showed that the proposed study has the potential to contribute to making the wheat classification process more reliable, effective, and objective by helping the experts.