Yazar "Ashour, Ashraf" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Development of alkali-activated binders from recycled mixed masonry-originated waste(ELSEVIER, 2021) Yildirim, Gürkan; Kul, Anil; Ozcelikci, Emircan; Sahmaran, Mustafa; Aldemir, Alper; Figueira, Diogo; Ashour, AshrafIn this study, the main emphasis is placed on the development and characterization of alkali-activated binders completely produced by the use of mixed construction and demolition waste (CDW)-based masonry units as aluminosilicate precursors. Combined usage of precursors was aimed to better simulate the real-life cases since in the incident of construction and demolition, these wastes are anticipated to be generated collectively. As different masonry units, red clay brick (RCB), hollow brick (HB) and roof tile (RT) were used in binary combinations by 75-25%, 50-50% and 25-75% of the total weight of the binder. Mixtures were produced with different curing temperature/periods and molarities of NaOH solution as the alkaline activator. Characterization was made by the compressive strength measurements supported by microstructural investigations which included the analyses of X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX). Results clearly showed that completely CDW-based masonry units can be effectively used collectively in producing alkali-activated binders having up to 80 MPa compressive strength provided that the mixture design parameters are optimized. Among different precursors utilized, HB seems to contribute more to the compressive strength. Irrespective of their composition, main reaction products of alkali-activated binders from CDW-based masonry units are sodium aluminosilicate hydrate (N-A-S-H) gels containing different zeolitic polytypes with structure ranging from amorphous to polycrystalline.Öğe Impact resistance of deflection-hardening fiber reinforced concretes with different mixture parameters(Ernst & Sohn, 2019) Banyhussan, Qais S.; Yildirim, Gurkan; Anil, Ozgur; Erdem, R. Tugrul; Ashour, Ashraf; Sahmaran, MustafaThe impact behavior of deflection-hardening High Performance Fiber Reinforced Cementitious Concretes (HPFRCs) was evaluated herein. During the preparation of HPFRCs, fiber type and amount, fly ash to Portland cement ratio and aggregate to binder ratio were taken into consideration. HPFRC beams were tested for impact resistance using free-fall drop-weight test. Acceleration, displacement, and impact load versus time graphs were constructed and their relationship to the proposed mixture parameters were evaluated. The paper also aims to present and verify a nonlinear finite element analysis, employing the incremental nonlinear dynamic analysis, concrete damage plasticity model, and contact surface between the dropped hammer and test specimen available in ABAQUS. The proposed modeling provides extensive and accurate data on structural behavior, including acceleration, displacement profiles, and residual displacement results. Experimental results which are further confirmed by numerical studies show that impact resistance of HPFRC mixtures can be significantly improved by a proper mixture proportioning. In the presence of high amounts of coarse aggregates, fly ash, and increased volume of hybrid fibers, impact resistance of fiberless reference specimens can be modified in a way to exhibit relatively smaller displacement results after impact loading without risking the basic mechanical properties and deflection-hardening response with multiple cracking.