Yazar "Ay, Feridun" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Plasma enhanced chemical vapor deposition of low loss as-grown germanosilicate layers for optical waveguides(2004) Ay, Feridun; Agan, Sedat; Aydinli, AtillaWe report on systematic growth and characterization of low-loss germanosilicate layers for use in optical waveguides. Plasma enhanced chemical vapor deposition (PECVD) technique was used to grow the films using silane, germane and nitrous oxide as precursor gases. Chemical composition was monitored by Fourier transform infrared (FTIR) spectroscopy. N-H bond concentration of the films decreased from 0.43 ×1022 cm -3 down to below 0.06x 1022 cm-3, by a factor of seven as the GeH4 flow rate increased from 0 to 70 seem. A simultaneous decrease of O-H related bonds was also observed by a factor of 10 in the same germane flow range. The measured TE loss rates at ?=632.8 nm were found to increase from are 0.20 ± 0.02 to 6.46 ± 0.04 dB/cm as the germane flow rate increased from 5 to 50 seem, respectively. In contrast, the propagation loss values for TE polarization at ?-1550 nm were found to decrease from 0.32 ± 0.03 down to 0.14 ± 0.06 dB/cm for the same samples leading to the lowest values reported so far in the literature, eliminating the need for high temperature annealing as is usually done for these materials to be used in waveguide devices.Öğe Stress effects in prism coupling measurements of thin polymer films(Springer Heidelberg, 2005) Agan, Sedat; Ay, Feridun; Kocabaş, A.; Aydınlı, A.Due to the increasingly important role of some polymers in optical waveguide technologies, precise measurement of their optical properties has become important. Typically, prism coupling to slab waveguides made of materials of interest is used to measure the relevant optical parameters. However, such measurements are often complicated by the softness of the polymer films when stress is applied to the prism to couple light into the waveguides. In this work, we have investigated the optical properties of three different polymers, polystyrene (PS), polymethyl-methacrylate (PMMA), and benzocyclobutane (BCB). For the first time, the dependence of the refractive index, film thickness, and birefringence on applied stress in these thin polymer films was determined by means of the prism coupling technique. Both symmetric trapezoid shaped and right-angle prisms were used to couple the light into the waveguides. It was found that trapezoid shaped prism coupling gives better results in these thin polymer films. The refractive index of PMMA was found to be in the range of 1.4869 up to 1.4876 for both TE and TM polarizations under the applied force, which causes a small decrease in the film thickness of up to 0.06 mum. PMMA waveguide films were found not to be birefringent. In contrast, both BCB and PS films exhibit birefringence albeit of opposing signs.