Yazar "Bayindirli, Cihan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Exergy, exergoeconomic, and sustainability analyses of a diesel engine using biodiesel fuel blends containing nanoparticles(Pergamon-Elsevier Science Ltd, 2023) Dogan, Battal; Celik, Mehmet; Bayindirli, Cihan; Erol, DervisThe current paper investigated in detail the influence of titanium dioxide (TiO2) and silver oxide (Ag2O) nanoparticles additives into biodiesel fuel obtained from cottonseed oil in terms of performance and emissions. The fuel blends formed by nanoparticles with biodiesel fuel were evaluated from a different perspective with energy, exergy, and exergoeconomic analyses by utilizing the data from the experiments. Thermal efficiency and exergy efficiency increase when nanoparticles were mixed to the biodiesel fuel. Total exergy losses in fuel blends decrease with the nanoparticle additives. When the engine torque was 40 Nm, the total exergy losses for C100, CAg-75, and CTi-75 test fuels were 14.49 kW, 13.91 kW, and 12.17 kW, respectively. The total exergy loss in D100 fuel was calculated as 12.04 kW under the same conditions. The sustainability indexes for D100 and CTi-75 fuels at an engine torque of 40 Nm were 1.626 and 1.620, respectively. Due to the high price of nanoparticles, test fuels with nanoparticles have a higher cost per unit exergy for engine work than pure biodiesel fuel. Hence, it is essential to decrease the cost of nanoparticle production to expand the using of nanoparticle additives in biodiesel.Öğe Role of different type nanoparticles on exergy, thermoeconomic, exergoeconomic, environmental, and enviroeconomic indicators in a CI engine fueled with rapeseed oil biodiesel(Elsevier Ltd, 2025) Erdi Gülcan, Halil; Bayindirli, Cihan; Erol, Derviş; Çelik, MehmetThis present study conducts energy, exergy, thermoeconomic, exergoeconomic, environmental, and enviroeconomic analyses for a CI engine fuelled with rapeseed oil biodiesel that includes varying proportions of TiO2, Ag2O, and CeO2 nanoparticles. Experiments are performed on four different engine torques (between 10 Nm and 40 Nm engine torque ranges) and 1800 1/min shaft speed. The addition of nanoparticles to 100 % rapeseed oil biodiesel (R100) fuel positively impacts energy, exergy, thermoeconomic, and exergoeconomic results. Among all the test fuels, the best energy, exergy, thermoeconomic, and exergoeconomic performance results are obtained with the R + Ti75 fuel containing 75 ppm TiO2, followed by the R + Ce75 and R + Ti50 fuels. The R + Ti75 and R + Ce75 fuels reduce exergy destruction by an average of 7 % and 5.5 % respectively compared to the R100 fuel, while increasing exergy efficiency by an average of 5 % and 4 %. Additionally, the maximum reduction in capital cost (reduction in thermoeconomic impact) is achieved with the R + Ti75 fuel, with an average reduction of approximately 12 %. On the other hand, the lowest environmental impact is obtained with the R100 fuel, while the highest environmental impact is observed with the R + Ti75 and R + Ce75 fuels. In conclusion, the most efficient blends in terms of energy, exergy, thermoeconomic, and exergoeconomic aspects are the R + Ti75 and R + Ce75 fuels. © 2024