Yazar "Bayrakdar, Alpaslan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The protective effects of selenium and boron on cyclophosphamide-induced hepatic oxidative stress, inflammation, and apoptosis in rats(Elsevier Ltd, 2024) Cengiz, Mustafa; Gür, Bahri; Gür, Fatma; Şahintürk, Varol; Bayrakdar, Alpaslan; Şahin, Ilknur Kulcanay; Başkoy, Sıla AppakCyclophosphamide (CP) is an alkylating anticancer drug with broad clinical application that is highly effective in the treatment of cancer and non-malignant diseases. However, the main limiting effect of CP is multi-organ toxicity due to damage to normal tissues. The aim of this study is to compare the hepatoprotective potential of selenium (Se) and boron (B) in CP-induced liver injury in experimental rats. The rats were randomly divided into six equal groups: Control (saline), 200 mg/kg CP (administered once on the fourth day of the experiment), 1.5 mg/kg Se (administered once/time daily for 6 days), 20 mg/kg B (administered once/time daily for 6 days), Se + CP and B + CP administered intraperitoneally (i.p.). Administration of CP leads to an increase in the levels of apoptotic markers (Bax, caspase-3), the apoptotic signaling pathway (Nrf2), oxidative stress indicators (TOS, OSI), lipid peroxidation markers (MPO, MDA), inflammation levels (NF-kB, TNF-?, IL-1?, IL -6), liver function markers (ALT, AST, ALP), while apoptosis markers (Bcl-2), apoptosis pathway (Keap-1), oxidative stress indicator (TAS), inflammation (IL -10) and intracellular antioxidant defense system (SOD, CAT, GPx and GSH) decreased. In addition, degeneration of hepatocytes and congestion in the central veins were observed. In contrast, in the groups administered Se and B with CP, the changes that occurred were reversed. However, it was found that Se protects the liver slightly better against CP damage than B. The protective effect of Se and B against the toxic effects of CP on the antioxidant markers SOD, CAT and GPx1 was also investigated in silico. The in silico results were consistent with the in vivo results for SOD and CAT, but not for GPx1. © 2024Öğe The role of Bax/Bcl-2 and Nrf2-Keap-1 signaling pathways in mediating the protective effect of boric acid on acrylamide-induced acute liver injury in rats(Pergamon-Elsevier Science Ltd, 2022) Cengiz, Mustafa; Ayhanci, Adnan; Akkemik, Ebru; Sahin, Ilknur Kulcanay; Gur, Fatma; Bayrakdar, Alpaslan; Cengiz, Betul PekerIntroduction: This study aims to investigate whether boric acid (BA) can protect rats from acrylamide (AA)induced acute liver injury. Materials and methods: AA was used to induce acute liver injury. Thirty rats were divided into five group including Group 1 (saline), Group 2 (AA), Group 3 (20 mg/kg BA), Group 4 (10 mg/kg BA+AA) and Group 5 (20 mg/kg BA+AA). Their blood and liver were harvested to be kept for analysis. Liver function enzyme activities were performed by spectrophotometric method. Catalase (CAT), superoxide dismutase (SOD) activity, and malondialdehyde levels were determined by colorimetric method. The in-silico studies were performed using the blind docking method. Results: Administration AA to rats, biochemical parameters, liver histology, and expression levels of apoptotic markers were negatively affected. However, after the administration of BA, the altered biochemical parameters, liver histology, and expression levels of apoptotic markers were reversed. Moreover, the mechanisms of AA-induced deterioration in the levels of SOD, CAT, and Nrf2-Keap-1 and the mechanisms of the protective effect of BA against these deteriorations were explained by in silico studies. Conclusion: Thus, the present study could explain the interactions between AA and thiol-containing amino acid residues of Keap-1, the effect of BA on these interactions, and the biochemical toxicity caused by the AA. In this sense, this work is the first of its kind in the literature. Based on the biochemical, histopathological, and in silico results, it can be suggested that BA has the potential to be used as a protective agent against AA-induced liver injury.