Yazar "Cakmak, Abdulvahap" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: An approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses(ELSEVIER SCI LTD, 2020) Dogan, Battal; Cakmak, Abdulvahap; Yesilyurt, Murat Kadir; Erol, DervisStudies on alternative and environmentally friendly fuels for compression-ignition engines continue intensively. In this work, energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses have been conducted by evaluating performance and emission values obtained by operating with different ratios of 1-heptanol/diesel blends (Hp0, Hp5, Hp10, and Hp20) as novel fuels under a constant speed (1500 rpm) with different engine loads (25%, 50%, 75%, and full load) in a single-cylinder, four-stroke, water-cooled, direct-injection, compression-ignition engine. In the test engine, energy and exergy efficiencies and losses, energetic and exergetic powers, irreversibility, and destruction of the exergy for the aforementioned fuel blends have been calculated and compared with pure diesel fuel. In the tests, the highest fuel consumption was determined as 0.221 kg/kWh in HP20 fuel at 100% load because 1-heptanol has lower calorific value than that of neat diesel fuel. The energy efficiency values in different loads of diesel engine for all fuel blends (Hp0-Hp20) have been calculated to be as between 14.46% and 40.72% along with the corresponding exergy efficiency values have been found to be as between 13.43% and 37.79%. By performing emission measurements, the highest CO2 emission cost has been calculated as 66.94 USD/year at a 100% load in Hp10 fuel according to the enviroeconomic analysis. In this present research, by implementing the exergoeconomic analysis, the highest engine output power cost at a load of 25% has been noted to be at 1.6 USD/MJ for Hp20 blend. Sustainability analysis has been determined according to the SI index, and the highest index was calculated to be 1.6 at a 100% load for Hp0 fuel.Öğe The experimental investigation on the impact of n-octanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: exergy, exergoeconomic, environmental analyses(Springer, 2022) Cakmak, Abdulvahap; Yesilyurt, Murat Kadir; Erol, Dervis; Dogan, BattalThe use of alcohol with traditional diesel fuel in diesel engines reduces environmental damage. When the ternary mixtures obtained by adding biodiesel to diesel-alcohol fuel mixtures are used without making any changes in the compression-ignition (CI) engine, there is no significant problem in terms of performance and emissions. This research dealt energetic, exergetic, and environmental evaluation for a CI engine fueled with blends created using diesel/biodiesel/n-octanol at a constant speed of 1500 rpm and different loads (25, 50, 75, and 100%). Performance and emission values were recorded in the tests. Economic and environmental analyses were realized by using the data obtained in these tests in thermodynamic relations. The losses and efficiency of the engine were computed in the energy analysis. The highest thermal efficiency was found to be 40.6% in B20 and B20OCT5 at full load, while the lowest one was observed to be 15.77% when the engine fueled with B100 at 25% load. In the exergy analysis, exhaust exergy, exergy destroyed, and entropy generation were determined. Thermal and exergy efficiencies were parallel in all fuels depending on the load. The highest exergy efficiency was calculated to be 30.4% for B20 and B20OCT5 at full load. Lower exergy destruction was acquired for diesel fuel at full load in comparison with B20OCT20, B20OCT15 and B20OCT10. CO2 emission of fuels was used in exergy-based environmental analysis. The lowest environmental cost was determined as 3.85 $ month(-1) at 25% load in B20OCT10. The highest power cost was achieved to be 10.61 $ MJ(-1) at 25% load when the engine was run on B20OCT20. The cost of exergy losses at 25% load was computed to be 3.67 $ h(-1) for B20OCT20. While the increase in alcohol content in the blends caused a decrease in harmful pollutants, it is not economical due to the expensive pump prices. To conclude, it is to be clearly indicated that due to systematic thermodynamic, economic, and environmental analyses and the usage of n-octanol as a long-chain alcohol in the CI engine with blending diesel and biodiesel, this paper goes beyond previous efforts in the literature.