Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Camci, C." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    New approach to timelike Bertrand curves in 3-dimensional Minkowski space
    (Vasyl Stefanyk Precarpathian Natl Univ, 2023) Erdem, H. A.; Ucum, A.; Ilarslan, K.; Camci, C.
    In the theory of curves in Euclidean 3-space, it is well known that a curve /3 is said to be a Bertrand curve if for another curve /3* there exists a one-to-one correspondence between /3 and /3* such that both curves have common principal normal line. These curves have been studied in differ-ent spaces over a long period of time and found wide application in different areas. In this article, the conditions for a timelike curve to be Bertrand curve are obtained by using a new approach in contrast to the well-known classical approach for Bertrand curves in Minkowski 3-space. Related examples that meet these conditions are given. Moreover, thanks to this new approach, timelike, spacelike and Cartan null Bertrand mates of a timelike general helix have been obtained.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On The Explicit Characterization Of Curves On A (N - 1)-Sphere In Sn
    (Int Electronic Journal Geometry, 2013) Camci, C.; Kula, L.; İlarslan, Kazım; Hacisalihoglu, H. H.
    In (n+1)-dimensional Euclidean space E-n+(1), harmonic curvatures and focal curvatures of a non-degenerate curve were defined by Ozdamar and Hacisalihoglu in [7] and by Uribe-Vargas in [9], respectively. In this paper, we investigate the relations between the harmonic curvatures of a non-degenerate curve and the focal curvatures of tangent indicatrix of the curve. Also we give the relationship between the Frenet apparatus (vectors and the curvature functions) of a curve alpha in E-n (+1) and the Frenet apparatus of tangent indicatrix alpha(T) of the curve alpha. In the main theorem of the paper, we give a characterization for a curve to be a (n-1)-spherical curve in S-n by using focal curvatures of the curve. Furtermore we give that harmonic curvature of the curve is focal curvature of the tangent indicatrix.

| Kırıkkale Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kırıkkale Üniversitesi, Kırıkkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim