Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Canak, Ibrahim" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Tauberian theorems for iterations of weighted mean summable integrals
    (Springer, 2019) Ozsarac, Firat; Canak, Ibrahim
    Let p be a positive weight function on which is integrable in Lebesgue's sense over every finite interval in symbol: such that for each and For a real- valued function and denote. But the converse of this implication is not true in general. In this paper, we obtain some Tauberian theorems for the weighted mean method of integrals in order that the converse implication holds true. Our results extend and generalize some classical type Tauberian theorems given for Cesaro and logarithmic summability methods of integrals. we say that iteration of weighted mean method determined by the function integrable to a finite number L and we write s(the existence of the limit limx.8 But the converse of this implication is not true in general. In this paper, we obtain some Tauberian theorems for the weighted mean method of integrals in order that the converse implication holds true. Our results extend and generalize some classical type Tauberian theorems given for Cesaro and logarithmic summability methods of integrals.
  • [ X ]
    Öğe
    TAUBERIAN THEOREMS FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY OF INTEGRALS
    (Univ Nis, 2020) Ozsarac, Firat; Canak, Ibrahim
    Let q be a positive weight function on R+ := [0, infinity) which is integrable in Lebesgue's sense over every finite interval (0, x) for 0 < x < infinity, in symbol: q is an element of L-loc(1)(R+) such that Q(x) := integral(x)(0) q(t)dt not equal 0 for each x > 0, Q(0) = 0 and Q(x) -> infinity as x -> infinity. Given a real or complex-valued function f is an element of L-loc(1) (R+), we define s(x) := integral(x)(0) f (t)dt and tau((0))(q) (x) := s(x), tau((m))(q) (x) := 1/Q(x) integral(x)(0) tau((m-1))(q) (t)q(l)di (x > 0, m = 1, 2, ...), provided that Q(x) > 0, We say that integral(infinity)(0) (x)dx is summable to L by the m-th iteration of weighted mean method determined by the function q(x), or for short, ((N) over bar, q, m) integrable to a finite number L if x ->infinity(lim) tau((m))(q) (x) = L. In this case, we write s(x) -> L((N) over bar, q, m). It is known that if the limit lim(x ->infinity) (x) = L exists, then lim(x ->infinity) tau((m))(q) (x) = L also exists. However, the converse of this implication is not always true. Some suitable conditions together with the existence of the limit lim(x ->infinity) tau((m))(q) (x), which is so called Tauberian conditions, may imply convergence of lim(x ->infinity) s(x). In this paper, one- and two-sided Tauberian conditions in terms of the generating function and its generalizations for ((N) over bar, q , m) summable integrals of real- or complex-valued functions have been obtained. Some classical type Tauberian theorems given for Cesaro summability (C, 1) and weighted mean method of summability ((N) over bar, q) have been extended and generalized.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Tauberian theorems for the weighted mean method of summability of integrals
    (Amer Inst Physics, 2019) Canak, Ibrahim; Ozsarac, Firat
    Let q be a positive weight function on R+ := [0, infinity) which is integrable in Lebesgue's sense over every finite interval (0, x) for 0 < x < infinity, in symbol: q is an element of L-loc(1)(R+) such that Q(x) := integral(x)(0)(t)dt # 0 for each x > 0, Q(0) = 0 and Q(x) -> infinity as x -> infinity. Given a real or complex-valued function f is an element of L-loc(1)(R+), we define s(x) := integral(x)(0) f(t)dt and tau((0))(q)(x) := s(x), tau((m))(q)(x) := 1/Q(x) integral(x)(0) tau((m 1))(q)(t)q(t)dt (x > 0, m = 1, 2, ...), provided that Q(x) > 0. We say that integral(infinity)(0) f(x)dx is summable to L by the m-th iteration of weighted mean method determined by the function q(x), or for short, ((N) over bar, q, m) integrable to a finite number L if lim(x ->infinity) tau((m))(q)(x) = L. In this case, we write s(x) -> L((N) over bar, q, m). It is known that if the limit lim(x ->infinity) s(x) = L exists, then lim(x ->infinity) tau((m))(q)(x) = L also exists. However, the converse of this implication is not always true. Some suitable conditions together with the existence of the limit lim(x ->infinity) tau((m))(q)(x), which is so called Tauberian conditions, may imply convergence of lim(x ->infinity) s(x). In this paper, one- and two-sided Tauberian conditions in terms of the generating function and its generalizations for ((N) over bar, q, m) summable integrals of real- or complex-valued functions have been obtained. Some classical type Tauberian theorems given for Cesaro summability (C, 1) and weighted mean method of summability ((N) over bar, q) have been extended and generalized.

| Kırıkkale Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kırıkkale Üniversitesi, Kırıkkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim