Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Duman, Elvan" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Automatic Landmark Detection through Circular Hough Transform in Cephalometric X-rays
    (Ieee, 2017) Duman, Elvan; Kokver, Yunus; Unver, Halil Murat; Erdem, Osman Ayhan
    In this paper, a knowledge based framework is proposed to detect automatically cephalometric landmarks: Porion (Po), Sella (S), Menton (Me), Pogonion (Pg) and Gnathion (Gn). In this way anomalies can be diagnosed easily by orthodontists. Our framework comprise of two main steps: (1) Adaptive Histogram Equalisation (AHE) is applied to clarify the image which is used to determine the method of treatment in orthodontics and obtained from the plain X-ray. (2) Circular Hough Transform method is used to locate the cephalometric landmarks automatically on the processed image, the method was tested on 7 cephalometric images and our framework accurately and automatically locates these 5 cephalometric landmarks.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Statistical Edge Detection and Circular Hough Transform for Optic Disk Localization
    (Mdpi, 2019) Unver, Halil Murat; Kokver, Yunus; Duman, Elvan; Erdem, Osman Ayhan
    Accurate and efficient localization of the optic disk (OD) in retinal images is an essential process for the diagnosis of retinal diseases, such as diabetic retinopathy, papilledema, and glaucoma, in automatic retinal analysis systems. This paper presents an effective and robust framework for automatic detection of the OD. The framework begins with the process of elimination of the pixels below the average brightness level of the retinal images. Next, a method based on the modified robust rank order was used for edge detection. Finally, the circular Hough transform (CHT) was performed on the obtained retinal images for OD localization. Three public datasets were used to evaluate the performance of the proposed method. The optic disks were successfully located with the success rates of 100%, 96.92%, and 98.88% for the DRIVE, DIARETDB0, and DIARETDB1 datasets, respectively.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Web sayfalarının gizli anlam analizi yaklaşımıyla otomatik olarak sınıflandırılması
    (Kırıkkale Üniversitesi, 2013) Duman, Elvan; Erbay, Hasan
    Bilgisayar ve ağ teknolojisinin hızlı gelişimi İnternet?in popülaritesini arttırmaktadır. İnternet üzerindeki bilgi miktarının devasa artışı ve web sayfalarının barındırdığı gürültülü bilginin çeşitliliği nedeniyle web sayfalarının içerik sınıflandırması doğal metin sınıflandırmasına göre daha karmaşık ve zordur. Geleneksel bilgi alma metotları dokümanların sınıflandırılabilmesi için terimlerin doküman içerisinde bulunmasını kullanır fakat bunun sonucunda genellikle ilgisiz web sayfaları sonuç olarak döndürülür. Bu çalışmada, web sayfalarını etkili bir şekilde sınıflandırabilmek için Gizli Anlam Analiz temelli otomatik web sayfası sınıflandırma algoritması geliştirilmiştir. Algoritmanın son aşamasında Destek Vektör Makinesi yardımıyla sınıfları birbirinden ayıran eğri çizilmiştir. Ayrıca başarı ve performansı etkileyen terim ağırlıklandırma ve özellik uzayının yüksek boyutluluk problemine çözüm sağlayan özellik seçim yöntemleri üzerinde çalışılmıştır. Deneysel sonuçlar önerilen sınıflandırma algoritmasının etkinliğini göstermiştir ve dokümanların iyi temsil edildiği bir terim - doküman matrisinin sınıflandırma performansını geliştirdiğini saptamıştır.

| Kırıkkale Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kırıkkale Üniversitesi, Kırıkkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim