Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Emiroglu, Bülent Gürsel" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Predicting 1p/19q chromosomal deletion of brain tumors using machine learning
    (Ice Publishing, 2021) Cinarer, Gokalp; Emiroglu, Bülent Gürsel; Yurttakal, Ahmet Haşim
    Advances in molecular and genetic technologies have enabled the study of mutation and molecular changes in gliomas. The 1p/19q coding state of gliomas is important in predicting pathogenesis-based pharmacological treatments and determining innovative immunotherapeutic strategies. In this study, T1-weighted and T2-weighted fluid-attenuated inversion recovery magnetic resonance imaging (MRI) images of 121 low-grade glioma patients with biopsy-proven 1p/19q coding status and no deletion (n = 40) or co-deletion (n = 81) were used. First, regions of interests were segmented with the grow-cut algorithm. Later, 851 radiomic features including three-dimensional wavelet preprocessed and non-preprocessed ones were extracted from six different matrices such as first order, shape and texture. The extracted features were preprocessed with the synthetic minority over-sampling technique algorithm. Next, the 1p/19q decoding states of gliomas were classified using machine-learning algorithms. The best classification in the classification of glioma grades (grade II and grade III) according to 1p/19q coding status was obtained by using the logistic regression algorithm, with 93.94% accuracy and 94.74% area under the curve values. In conclusion, it was determined that non-invasive estimation of 1p/19q status from MRI images enables the selection of effective treatment strategies with early diagnosis using machine-learning algorithms without the need for surgical biopsy.

| Kırıkkale Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kırıkkale Üniversitesi, Kırıkkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim