Yazar "Erdogan, Bulent" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Curcumin Attenuates Inflammation, Oxidative Stress, and Ultrastructural Damage Induced by Spinal Cord Ischemia-Reperfusion Injury in Rats(Elsevier Science Bv, 2016) Gokce, Emre Cemal; Kahveci, Ramazan; Gokce, Aysun; Sargon, Mustafa Fevzi; Kisa, Ucler; Aksoy, Nurkan; Erdogan, BulentObjectives: Curcumin is a molecule found in turmeric root that possesses anti-inflammatory and antioxidant properties and has been widely used to treat neurodegenerative diseases. We investigated whether curcumin stimulates the neurorepair process and improves locomotor function in a rat model of spinal cord ischemia-reperfusion injury. Methods: Thirty-two Wistar albino rats (190220 g) were randomly allocated into 4 groups of 8 rats each: 1 sham-operated group and 3 ischemia-reperfusion injury groups that received intraperitoneal injections of saline vehicle, methylprednisolone (MP, 30 mg/kg following induction of ischemia-reperfusion [IR] injury), or curcumin (200 mg/kg for 7 days before induction of IR injury). Spinal cord IR injury was induced by occlusion of the abdominal aorta for 30 minutes. After 24 hours of reperfusion, locomotor function was assessed using the Basso, Beattie, and Bresnahan scale. All animals were sacrificed. Spinal cord tissues were harvested to evaluate histopathological and ultrastructural alterations and to analyze levels of malondialdehyde, tumor necrosis factor-alpha, interleukin-1 beta, nitric oxide, and caspase-3, as well as enzyme activities of superoxide dismutase and glutathione peroxidase. Results: Intraperitoneal administration of curcumin significantly reduced inflammatory cytokine expression, attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in comparison to treatment with MP or saline. Histopathological and ultrastructural abnormalities were significantly reduced in curcumin-treated rats compared to the MP-and saline-treated groups. Furthermore, curcumin significantly improved locomotor function. Conclusions: Curcumin treatment preserves neuronal viability against inflammation, oxidative stress, and apoptosis associated with ischemia-reperfusion injury. (C) 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.Öğe Neuroprotective effects of rosuvastatin against traumatic spinal cord injury in rats(Elsevier Science Bv, 2014) Kahveci, Ramazan; Gokce, Emre Cemal; Gurer, Bora; Gokce, Aysun; Kisa, Ucler; Cemil, Duran Berker; Erdogan, BulentRosuvastatin, which is a potent stain, has never been studied in traumatic spinal cord injury. The aim of this study was to investigate whether rosuvastatin treatment could protect the spinal cord after experimental spinal cord injury. Rats were randomized into the following five groups of eight animals each: control, sham, trauma, rosuvastatin, and methylprednisolone. In the control group, no surgical intervention was performed. In the sham group, only laminectomy was performed. In all the other groups, the spinal cord trauma model was created by the occlusion of the spinal cord with an aneurysm clip. In the spinal cord tissue, caspase-3 activity, tumor necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, nitric oxide levels, and superoxide dismutase levels were analyzed. Histopathological and ultrastructural evaluations were also performed. Neurological evaluation was performed using the Basso, Beattie, and Bresnahan locomotor scale and the inclined plane test After traumatic spinal cord injury, increases in caspase-3 activity, tumor necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels were detected. In contrast, the superoxide dismutase levels were decreased. After the administration of rosuvastatin, decreases were observed in the tissue caspase-3 activity, tumor necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels. In contrast, tissue superoxide dismutase levels were increased. Furthermore, rosuvastatin treatment showed improved results concerning the histopathological scores, the ultrastructural score and the functional tests. Biochemical, histopathological, ultrastructural analysis and functional tests revealed that rosuvastatin exhibits meaningful neuroprotective effects against spinal cord injury. (C) 2014 Elsevier B.V. All rights reserved.