Yazar "Erol, Derviş" seçeneğine göre listele
Listeleniyor 1 - 12 / 12
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Study Toward Analyzing the Energy, Exergy and Sustainability Index Based on Performance and Exhaust Emission Characteristics of a Spark-Ignition Engine Fuelled with the Binary Blends of Gasoline and Methanol or Ethanol(Kırıkkale Üniversitesi, 2020) Doğan, Battal; Yeşilyurt, Murat Kadir; Erol, Derviş; Çakmak, AbdülvahapIn this study, engine performance and exhaust emission tests were performed using pure gasoline and volumetrically 10% ethanol-C2 or methanol-C1/gasoline blends (G100, E10, and M10) fuels in a single-cylinder, four-stroke, water-cooled, spark-ignition (SI) engine under constant engine speed (1500 rpm) and different loads (25%, 50%, 75%, and 100%). In the tested engine, the brake specific fuel consumption values of G100, M10 and E10 fuels under full load condition were found to be as 0.279 kg/kWh, 0.296 kg/kWh and 0.307 kg/kWh, respectively. When the exhaust emissions were examined, E10 and M10 fuels were observed to have lesser CO, CO2, NOX, and HC emissions compared to pure gasoline. The lowest CO emission was determined as 3.15% for E10 fuel at 75% load. NOX emission decreased with the increase of engine load in all fuel blends, the best performance is measured as 908.86 ppm in E10 fuel at 100% load. The minimum HC emission for E10 fuel was measured as 116.36 ppm at 75% load. Compared with G100 fuel, E10 and M10 blends emitted 39% and 35% less HC emissions, respectively at 75% load. In addition, E10 and M10 fuels generated 8% and 5% less CO2 emissions at all engine loads, respectively, as compared to G100 fuel. As a result of thermodynamic analyses; The highest exergy efficiency values were found to be at 21.0% for G100, 17.92% for E10, and 16.85% for M10, respectively. Besides, the energy efficiencies were obtained to be as 30.01% for G100, 28.33% for E10, and 29.90% for M10, respectively. According to the sustainability analysis, E10 fuel performed better results than M10 fuel in order to be an alternative to G100 fuel.Öğe A Study Toward Analyzing the Energy, Exergy and Sustainability Index Based on Performance and Exhaust Emission Characteristics of a SparkIgnition Engine Fuelled with the Binary Blends of Gasoline and Methanol or Ethanol(2020) Doğan, Battal; Yeşilyurt, Murat; Erol, Derviş; Çakmak, AbdülvahapThe anxieties regarding global warming upon increasing greenhouse gas emission grades worldwide and the presence of petroleumbased fuels have directed the researchers to focus on the development of biofuels as well as the utilization of reformulated gasoline fuels by adding oxygenated additives resulting in an extensive application to improve fuel properties. In this study, engine performance and exhaust emission tests were performed using pure gasoline and volumetrically 10% ethanol-C2 or methanolC1/gasoline blends (G100, E10, and M10). The engine experiments for all test fuels were carried out in a single-cylinder, fourstroke, water-cooled, spark-ignition (SI) engine under fixed engine speed (1500 rpm) and various loading conditions (25%, 50%, 75%, and 100%). In the tested engine, the brake specific fuel consumption (BSFC) values of G100, M10, and E10 fuels under full load condition were found to be as 0.279 kg/kWh, 0.296 kg/kWh and 0.307 kg/kWh, respectively. When the exhaust emissions were examined, E10 and M10 fuels were observed to have lesser CO, CO2, NOX, and HC emissions in comparison with pure gasoline. The lowest CO emission was determined as 3.15% for E10 fuel at a 75% load. NOX emissions descended with the increase of engine load in all fuel blends meanwhile the best performance is measured as 908.86 ppm in E10 fuel at 100% load. The minimum HC emission for E10 fuel was measured as 116.36 ppm at a 75% load. Compared with G100 fuel, E10 and M10 blends emitted 39% and 35% fewer HC emissions, respectively at 75% load. Besides, E10 and M10 fuels generated 8% and 5% less CO2 emissions at all engine loads, respectively, when compared to G100 fuel. As a result of thermodynamic analyses; The highest exergy efficiency values were found to be at 21.0% for G100, 17.92% for E10, and 16.85% for M10, respectively. Besides, the energy efficiencies were obtained to be as 30.01% for G100, 28.33% for E10, and 29.90% for M10, respectively. According to the sustainability analysis, E10 fuel performed better results than M10 fuel in order to be an alternative to G100 fuel.Öğe An experimental comparative study of the effects on the engine performance of using three different motion mechanisms in a beta-configuration Stirling engine(Pergamon-Elsevier Science Ltd, 2024) Erol, DervişThis study deals with three different Stirling engines with rhombic, slider-crank, and bell-crank motion mechanisms which have been designed and manufactured. Engine performance tests of Stirling engines with these three different motion mechanisms at different operating parameters have been carried out in a laboratory environment. During the experimental studies under consideration, the cooler and heater temperatures have been kept at 300 K (+/- 5) and 1000 K (+/- 10), respectively. Engine performance tests have been performed at different charging pressures using helium, nitrogen, and air as working fluids. Despite the fact that the Stirling engines with these three different motion mechanisms have the same sweeping volumes and technical specifications, engine performance values have been obtained differently from each other. The main reason for this difference can be explained as friction and other mechanical losses in motion mechanisms. The performance values obtained depending on the type of motion mechanism are rhombic, slider-crank, and bell-crank, from highest to lowest, respectively. The highest engine power measured among all experimental studies has been 215.48 W at 550 rpm and 4 bar charging pressure in tests using helium gas and rhombic motion mechanism. The lowest engine power among the maximum power values has been obtained as 82.5 W at 167 rpm and 4 bar charging pressure in experiments using air as the working fluid and the bell-crank motion mechanism. As a matter of fact, the highest engine power within the maximum engine power values is 161.2% higher than the lowest engine power.Öğe Application of Higher-Order Alcohols (1-Hexanol-C6 and 1-Heptanol-C7) in a Spark-Ignition Engine: Analysis and Assessment(Springer Heidelberg, 2021) Yaman, Hayri; Doğan, Battal; Yeşilyurt, Murat Kadir; Erol, DervişStudies on the usage of gasoline-alcohol blends as an alternative fuel in spark-ignition engines have recently gained momentum. In the present research, energy, exergy, environmental, enviroeconomic, exergoenvironmental, and exergoenviroeconomic analyses were conducted with the performance and emission values acquired by utilizing gasoline, gasoline-heptanol, and gasoline-hexanol fuels (G100, HEX5-20, and HP5-20) as a fuel under different powers at a constant speed of 1600 rpm in a single-cylinder four-stroke spark-ignition engine. As the ratio of alcohol in fuel blends increases, fuel consumption also increases. NOX emission is higher, and CO and HC emissions are lower in alcohol-based fuel blends than G100 fuel. The highest thermal efficiency is 41.09% in G100 fuel at a power of 5 kW. As the ratio of alcohol in fuel blends increases, thermal efficiency decreases. The highest exergy destruction and entropy generation were determined to be 6.25 kW and 0.02134 kW/K, respectively, in HP20 fuel at a power of 5 kW. Entropy generation increases with an increase in the ratio of alcohol in alcohol-based fuels. HEX20 and HP20 fuels produce 25% and 30% more entropy, respectively, compared to G100 fuel. The mass and financial costs of the damage caused by the CO2 emission of fuels to the environment were determined by conducting four different analyses using energy and exergy analysis data. According to the exergoenvironmental and exergoenviroeconomic analyses, HP20 fuel reached the highest environmental pollution values of 4538.19 kg CO2/month and 65.804 $/month, respectively. The environmental cost of the CO2 emission released from the exhaust to the atmosphere is higher in alcohol-based fuels than G100 fuel. As a result of all analyses, it was concluded that hexanol and heptanol could be alternative fuels in spark-ignition engines under particular conditions.Öğe Araç Lastiklerinin Sırt Desen Tasarımında Üç Boyutlu Baskı Teknolojilerinin Kullanılabilirliğinin İncelenmesi Üzerine Deneysel Bir Çalışma(2020) Erol, Derviş; Doğan, Battal; Bozdemir, MustafaTaşıt lastiklerinin sırt desenlerinin; sürüş güvenliği, sürüş konforu, yakıt tüketimi, frenleme ve gürültü performans değerleri gibi farklı parametrelere bağlı olarak bilgisayar destekli tasarım programları yardımıyla üç boyutlu olarak tasarım çalışmaları yapılmaktadır. Lastik üretim kalıpları; yapıları itibariyle oldukça karmaşık ve imalatları çok pahalı olan sistemlerdir. Kaliteli bir taşıt lastiği üretiminde, lastik üretim kalıpları oldukça önemli bir yere sahiptir. Bilgisayar ortamında yapılan tasarımlardaki hatalar çoğu zaman tasarım sırasında fark edilememesinden dolayı imalat sırasında ortaya çıkmaktadır. Lastik kalıplarının imalatı yapıldıktan sonra ortaya çıkan tasarım hatalarından dolayı zaman ve maliyet açısından büyük zararlar yaşanmaktadır. Bu çalışma kapsamında lastik sırt desen prototip imalatı için; eklemeli üretim (Additive Manufacturing) yöntemlerinde deneysel çalışmalar yapılarak en uygun prototoip üretim yöntemin bulunması hedeflenmiştir. Bu amaçla geliştirilen lastik sırt desen prototip imalatı; Fused Deposition Modelling (FDM) ve Binder Jetting (3DP) teknolojilerine sahip olan iki farklı üç boyutlu baskı makineleri kullanılarak yapılmıştır. Ortaya çıkan üç boyutlu katı modellerin görüntü, kalite ve prototip üretim süreleri gibi teknik özellikler birbirleriyle karşılaştırılmıştır.Öğe Assessment of trade-off, exergetic performance, and greenhouse gas impact-cost analysis of a diesel engine running with different proportions of TiO2, Ag2O, and CeO2 nanoadditives(Pergamon-Elsevier Science Ltd, 2024) Gülcan, Halil Erdi; Erol, Derviş; Çelik, Mehmet; Bayındırlı, CihanIn this study, the effects of adding different proportions of TiO2, Ag2O, and CeO2 nanoparticles to a threecylinder, water-cooled, four-stroke, direct injection diesel engine on engine performance and exhaust emissions are experimentally investigated. The experiments are conducted at four different engine loads (10, 20, 30, and 40 Nm) and a constant engine speed (1800 rpm). TiO2, Ag2O, and CeO2 nanoparticles are added to the diesel fuel at concentrations of 50 and 75 ppm each. The test fuels used in the study are as follows: D100, DTi50, DTi75, DAg50, DAg75, DCe50 and DCe75. Using the experimental results, analyses of energy, exergy, sustainability, greenhouse gas (GHG) emission impact, and cost are performed. The experimental results reveal that the use of nanoparticles in diesel fuel reduces BSFC. The highest reduction in BSFC is achieved with DTi75 fuel, averaging 9 %. Additionally, DTi75 fuel shows an average increase of 19 % in NOx emissions compared to D100 fuel, while smoke emissions decrease by an average of 30 %. The highest average increase in exergy efficiency compared to D100 fuel is obtained with DAg50 fuel (5.6 %), followed by DTi75 fuel (5.3 %). The addition of nanoparticles to diesel fuel also leads to an increase in GHG emissions. Compared to D100 fuel, the highest average contribution to GHG emissions increase is shown by DTi75 fuel (12 %), while the lowest average contribution is observed with DAg50 fuel (4 %).Öğe Comparative study on the performance of different drive mechanisms used in a beta type Stirling engine through thermodynamic analysis(2019) Erol, Derviş; Çalışkan, SinanIn this study, thermodynamic and kinematic analyses of bell crank, slidercrank, rhombic and scotch yoke drive mechanisms were performed for a betatype Stirling engine with a swept volume of 365 cm3. The kinematic analysesof Stirling engines with these different drive mechanisms were investigated byusing the MSC Adams program, and the pressure-volume variations dependingon the crankshaft angle were determined by using the isothermal analysismethod. It was determined that compression and expansion volume values ofrhombic drive mechanism were close to each other, while compression volumevalue was extremely higher than expansion volume value in other drivemechanisms. For this reason, in this research conducted with working fluid ofequal amount (m0.000716 kg), for all of drive mechanisms, it was determinedthat engine with rhombic drive mechanism generates 19.2% net work morethan the other drive mechanism. The masses of working fluid used in 1 barcharge pressure from engines with bell crank, slider crank, rhombic and scotchyoke drive mechanism were 0.000716 kg, 0.000737 kg, 0.000536 kg and0.000724 kg, respectively. The net work amounts obtained as a result of thethermodynamic analyses made for the 1 bar charge pressure value in bell crank,slider crank, rhombic and scotch yoke drive mechanisms are 12.85 J, 12.44 J,11.61 J and 13.05 J, respectively. In this research conducted with working fluidin the same charge pressure, it was determined that 10.8% less net work wasobtained from engine with rhombic drive mechanism. Since all the changes ofthe volume in the bell crank, slider crank and scotch yoke drive mechanismsare very close to each other, the net work performance values obtained withthe equal amount of working fluid and the same charge pressure values are alsovery close to each other.Öğe Design, Manufacturing and Testing of a Stirling Engine with Slider-Crank Mechanism(Kırıkkale Üniversitesi, 2022) Yaman, Hayri; Erol, DervişIn this study, a beta type Stirling engine with slider-crank mechanism having swept volume of 365 cm3 was designed, manufactured and performances tested. The design phase was first started by determining the operating parameters of the engine. The necessary mathematical calculations were performed by considering the operating conditions of the Stirling engine with a slider-crank mechanism to be manufactured. After determining the engine parameters, the dimensional design phase was started within the tolerance limits of the engine parts. The parts were designed by the computer-aided SolidWorks program in solid modeling and by the AutoCAD program in two-dimensional design and projecting. Each part used in the manufacturing of the Stirling engine was assembled delicately in the assembly process. A prony-type dynamometer, liquefied petroleum gas (LPG) fuel, and electronically controlled electric heater systems were developed to perform the performance tests and analyses of the manufactured engine. Experimental studies were conducted at hot end temperatures of 627 °C, 727 °C, and 827 °C and at a cold end temperature of 27 °C by utilizing an electrical heater as a heat source and air as a working fluid. According to the results obtained in experimental studies for different heater temperatures and different charge pressures, it was revealed that engine power values increased depending on the heater temperature and charge pressure increase. The maximum power values at all heater temperatures were acquired at a charge pressure of 4 bar. In this study, the maximum engine power was obtained as 69.5 W at a hot end temperature of 827 °C, at a charge pressure of 4 bar, and at an engine speed of 200 rpm when a stainless-steel displacement piston and air as a working fluid were utilized, and the maximum engine torque value was obtained as 4.21 Nm at a charge pressure of 4 bar and an engine speed of 135 rpm. The lowest engine power among the maximum engine power values obtained in all experimental studies was found as 17.09 W at a hot end temperature of 627 °C, at a pressure of 1 bar, and at an engine speed of 185 rpm. The maximum power values of the engine developed within the scope of this study at hot end temperatures of 627 °C, 727 °C, and 827 °C were determined to be 31.2 W, 48.3 W, and 69.5 W, respectively. Upon examining the results obtained from experimental studies, it is observed that the heater temperature and charge pressure have significant impacts on the performance values of Stirling engines. Within the scope of this study, a new power generation system that could use renewable energy sources was put into operation.Öğe Experimental assessment of a CI engine operating with 1-pentanol/diesel fuel blends(2020) Yeşilyurt, Murat; Doğan, Battal; Erol, DervişAlcohols have been known as influential alternatives for the utilization in the compression-ignition (CI) engines. In contrast to lower-order alcohols such as methanol-C1 and ethanol-C2, long-chain alcohols (higher-order alcohols) have a hopeful future for CI engines. Pentanol-C5 or amyl alcohol, regarding its affirmative chemical and physical properties, is a type of higher alcohol that can be obtained from biomass resources and hence it has to be evaluated as an alternating and sustainable fuel candidate in diesel engine applications. The objective of this work is to explore the engine performance and exhaust emission characteristics of a CI engine running on 1-pentanol/diesel fuel mixtures. For this aim of the experimental research, three different blends were created by infusing various ratios (10, 20, and 30% by volume) of 1-pentanol into pure diesel with implementing the splash-blending method to acquire the binary blends of Pt10, Pt20, and Pt30. The tested fuel samples were used in a single-cylinder diesel engine coupled with a generator. The influences of a next-generation alcohol addition to the diesel upon the engine performance along with exhaust emission levels of the tested engine were meticulously researched at six different engine loads (0, 0.4, 0.8, 1.2, 1.6, and 2 kW) with a stable speed (3000 rpm). The infusion of alcohol into the diesel fuel declined cetane number as well as the lower calorific value of the fuel blends. As a result of the study carried out, it was observed that the brake specific fuel consumption (BSFC) increased between 4.46- 11.78% averagely as the ratio of 1-pentanol in the mixtures increased while brake thermal efficiency (BTE) and exhaust gas temperature (EGT) dropped up to 6.75% and 6.69%, respectively owing to the lesser energy content of the 1- pentanol. When the test engine operating with binary blends, unburned hydrocarbon (HC) and carbon monoxide (CO) emissions were obtained to be higher than that of conventional diesel fuel due to the higher latent heat of vaporization (LHV) of 1-pentanol resulting in a cooling impact in the cylinder, leading descending trend in the efficiency of the combustion. Besides, the addition of 1- pentanol to diesel caused the mitigation in smoke emission by 77.37-89.60%, carbon dioxide (CO2) by 13.06-30.83%, and nitrogen oxides (NOX) by 13.43- 41.61% on an average as compared to diesel fuel. Overall, it has been shown up that 1-pentanol might be successfully utilized as an oxygenated fuel additive to diesel fuel, however in a minimum concentration of 1-pentanol, i.e., Pt10 blend has provided luminous outcomes in terms of mitigating the EGT, smoke opacity, and especiallyNOXemissions, however at the expense of boosting in the emissions of CO and HC.Öğe The investigation of exergoeconomic, sustainability and environmental analyses in an SI engine fuelled with different ethanol-gasoline blends(INDERSCIENCE ENTERPRISES LTD, 2020) Doğan, Battal; Erol, Derviş; Kodanlı, EvrenIn this study, performance and emission values were obtained under full load by using ethanol-gasoline blends as a fuel at different rates in a spark-ignition engine, and exergy, exergoeconomic and environmental analyses were performed with these values. Exergy of a fuel entering engine and lost exergies through cooling system, exhaust and radiation were calculated. CO, CO2, HC, and NO(X)emissions released from engine into environment were measured, and according to environmental analysis, cost of CO(2)emission was calculated as 393.78 USD/year for E0 fuel and as 306.78 USD/year for E30 fuel at 2,000 rpm. Ethanol-gasoline blends at different rates, environmental damage can be reduced by around 30% on an annual basis. Furthermore, with environmental analysis, lowest engine output power cost was found to be 29.77 USD/MJ in E0 fuel at 2,000 rpm, while highest engine output power cost was found to be 120 USD/MJ in E30 fuel at 4,500 rpm.Öğe Role of different type nanoparticles on exergy, thermoeconomic, exergoeconomic, environmental, and enviroeconomic indicators in a CI engine fueled with rapeseed oil biodiesel(Elsevier Ltd, 2025) Erdi Gülcan, Halil; Bayindirli, Cihan; Erol, Derviş; Çelik, MehmetThis present study conducts energy, exergy, thermoeconomic, exergoeconomic, environmental, and enviroeconomic analyses for a CI engine fuelled with rapeseed oil biodiesel that includes varying proportions of TiO2, Ag2O, and CeO2 nanoparticles. Experiments are performed on four different engine torques (between 10 Nm and 40 Nm engine torque ranges) and 1800 1/min shaft speed. The addition of nanoparticles to 100 % rapeseed oil biodiesel (R100) fuel positively impacts energy, exergy, thermoeconomic, and exergoeconomic results. Among all the test fuels, the best energy, exergy, thermoeconomic, and exergoeconomic performance results are obtained with the R + Ti75 fuel containing 75 ppm TiO2, followed by the R + Ce75 and R + Ti50 fuels. The R + Ti75 and R + Ce75 fuels reduce exergy destruction by an average of 7 % and 5.5 % respectively compared to the R100 fuel, while increasing exergy efficiency by an average of 5 % and 4 %. Additionally, the maximum reduction in capital cost (reduction in thermoeconomic impact) is achieved with the R + Ti75 fuel, with an average reduction of approximately 12 %. On the other hand, the lowest environmental impact is obtained with the R100 fuel, while the highest environmental impact is observed with the R + Ti75 and R + Ce75 fuels. In conclusion, the most efficient blends in terms of energy, exergy, thermoeconomic, and exergoeconomic aspects are the R + Ti75 and R + Ce75 fuels. © 2024Öğe The Effects of Canola Oil/Diesel Fuel/Ethanol/N-Butanol/Butyl Di Glycol Fuel Mixtures on Combustion, Exhaust Gas Emissions and Exergy Analysis(Universitas Muhammadiyah Magelang, 2022) Özer, Salih; Akçay, Mehmet; Doğan, Battal; Erol, Derviş; Setiyo, MujiIn recent years, there have been many studies on the widespread use of liquid fuels derived from biomass. A common emphasis in such studies is on fewer exhaust gas emissions and the expansion of renewable fuel production. Biodiesel is considered to be an important type of biomass fuel that is already produced commercially. But the production of biodiesel is laborious and comprises combination of several chemical processes. This study examines the effects of using oil used in biodiesel production with oxygen-rich chemicals on combustion (in-cylinder pressure (Cp), heat release rate (HRR), rate of pressure rise (RoPR), and cumulative heat release (CHR)), exhaust emission values, energy and exergy analysis. In this study, the effects of butyl di glycol use were also investigated and compared with commercially used ethanol and n-butanol. A transesterification method produced from canola oil the biodiesel used in the experiments. The experimental fuels were mixed volumetrically. For this purpose, experiments were carried out with canola biodiesel produced at 20% (D80B20) in diesel fuel and the results of the experiments were recorded. Under the same conditions, experiments were carried out by adding ethanol (D60C20E20), n-butanol (D60C20B20), butyl di glycol (D60C20G20) at a rate of 20% by volume to the canola oil added to the diesel fuel. The lowest values in terms of thermal and exergy efficiency were obtained in D60C20G20 fuel at all engine loads. Also, the highest entropy generation was calculated at all engine loads for this fuel blend. © 2022, Universitas Muhammadiyah Magelang. All rights reserved.