Yazar "Gürsel, I." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Chondroitin sulfate-coated polyhydroxyethyl methacrylate membrane prevents adhesion in full-thickness tendon tears of rabbits(W B Saunders Co-Elsevier Inc, 2002) Güdemez, E.; Eksioglu, F.; Korkusuz, P.; Asan, E.; Gürsel, I.; Hasirci, V.Polyhydroxyethyl methacrylate (pHEMA) membranes coated on one side with chondroitin sulfate (CS) were used to block adhesion physically and to reduce friction between healing flexor tendons and the surrounding tissue in rabbit forepaws after surgical repair. Digits with pHEMA-only, standard tendon sheath repair, and with no sheath repair were the controls. Over 12 weeks the CS-coated membranes were evaluated for joint flexion, adhesion limitation, and tendon healing progress. The membranes initially allowed for better flexion (i.e, for 6 weeks), but their relative superior effectiveness faded afterward. Histology showed that adhesions were less severe and healing was better in the CS-pHEMA membranes at 3 and 6 weeks. If further studies determine precise amounts or thicknesses of CS coats that will maximize its healing properties, CS-pHEMA should prove useful in clinical settings in which restoration of tendon sheath integrity with a minimum of adhesions is not possible. Copyright (C) 2002 by the American Society for Surgery of the Hand.Öğe In vivo response to biodegradable controlled antibiotic release systems(John Wiley & Sons Inc, 2001) Korkusuz, F.; Korkusuz, P.; Ekşioğlu, F.; Gürsel, I.; Hasirci, V.In this study, the major goal was to evaluate in vitro and in vivo findings by macroscopy, radiology, and histology to determine the effectiveness of therapy of experimental implant-related osteomyelitis with antibiotic carrier rods constructed of microbial polyesters. The polymers used were poly(3-hydroxybutyrate-co-4-hydroxyvalerate) [P(3HB-co-4-HB)] and poly(3-hydroxybutyrate-co-3-hydroxy-valerate) [P(3-HB-co-3-HV)]. Both the Sulperazone(R) and the Duocid(R)-P(3-HB-co-4-HB) rods with a drug to polymer ratio of 1:1 (w/w) were effective in treating the bone infection that was experimentally initiated by inoculation of a hemolytic strain of Staphylococcus aureus (coagulase positive; phage type 52/52b) together with metal implants into the medullary area of rabbit tibia. Macroscopical data revealed that the effectiveness of therapy was apparent at week 6 for all categories tested. Radiological findings with Duocid(R)- and Sulperazone(R)-loaded P(3-HB-co-4-HB) rods improved significantly when judged by changes in periosteal elevation, widening of bone shaft, new bone formation, and soft-tissue deformation after 6 weeks of implantation. Histologically the signs of infection were found to subside by weeks 3 and 6. inflammatory cells were replaced with bone-forming cells upon treatment with Sulperazone(R)-P(3-HB-co-4-HB) and Duocid(R)-P(3-HB-co-4-HB). Osteoblastic activity was prominent. Intramedullary inflammation, although still present, started to be replaced by fibrous or bony tissue. Histological findings presented the subsidence of infection. In summary, the antibiotic-loaded biopolymeric rods appeared to have potential as a new controlled-release system for the treatment of implant related osteomyelitis and chronic osteomyelitis. (C) 2001 John Wiley & Sons, Inc.