Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Genc, O." seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Biosorption of cadmium from aquatic systems by carboxymethyleellulose and immobilized Trametes versicolor
    (Elsevier Science Bv, 2002) Yalcinkaya, Y.; Soysal, L.; Denizli, A.; Arica, M.Y.; Bektas, S.; Genc, O.
    Trametes versicolor basidio spores immobilized onto carboxymethylcellulose were used for the removal of cadmium ions from aqueous solutions. The biosorption of Cd(II) ions on carboxymethylcellulose and both immobilized live and heat-killed fungal mycelia of T. versicolor was studied from aqueous solutions in the concentration range of 30-700 mg/L. The biosorption of Cd(II) ions by the carboxymethylcellulose and both immobilized live and heat-inactivated immobilized preparations increased as the initial concentration of cadmium ions increased in the medium. Maximum biosorption capacity for immobilized live and heat-inactivated fungal mycelia of T. versicolor was found as 124 and 153 mg Cd(II)/g, respectively whereas the amount of Cd(II) ions adsorbed on the plain carboxymethylcellulose beads was 43 mg/g. Biosorption equilibria were established in about I h and the correlation regression coefficients show that the adsorption process can be well defined by Langmuir equation. The temperature change between 15 and 45 degreesC did not affect the biosorption capacity. The effect of pH was also investigated and the maximum adsorption of Cd(II) ions on the carboxymethylcellulose and both live and heat-inactivated immobilized fungal mycelia were observed at pH 6.0. The carboxymethylcellulose-fungus beads could be regenerated using 10 mM HCl, with up to 98% recovery. The biosorbents were used in five biosorption-desorption cycles and no notable loss in the biosorption capacity was observed. 84% and 68% of cadmium ions were removed from synthetic waste water samples for 100 and 200 mg/L initial concentrations, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Biosorption of Hg(II) and Cd(II) from aqueous solutions: Comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium
    (Elsevier Sci Ltd, 2002) Kacar, Y.; Arpa, C.; Tan, S.; Denizli, A.; Genc, O.; Arica, M.Y.
    Basidiospores of P. chryosporium were immobilized into Ca-alginate beads via entrapment, and the beads incubated for vegetation at 30 degreesC for 5 days. The alginate beads and both entrapped live and heat inactivated fungal mycelia of Phanerochaete chryosporium were used for the removal of Hg(II) and Cd(II) ions from aqueous solution in the concentrations range of 30-500 mg l (-1). The biosorption of Hg(II) and Cd(II) ions by the biosorbents increased as the initial concentration of Hg(II) and Cd(11) ions increased in the medium. A biosorption equilibrium was established in about 1 h and the adsorbed heavy metal ions did not change further with time. The effect of pH was also investigated and the maximum biosorption of Hg(11) and Cd(II) ions on all the tested biosorbents were obtained between pH 5.0 and 6.0. Temperature over the range 15-45 degreesC had no significant effect on the biosorption capacity. The equilibrium was well described by Langmuir and Freundlich biosorption isotherms. The alginate-fungus beads could be regenerated using 10 mM HCl, up to 97% recovery. The biosorbents were reused in three biosorption-desorption cycles with negligible decrease in biosorption capacity. (C) 2002 Elsevier Science Ltd. All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Biosorption of mercury by carboxymethylcellulose and immobilized Phanerochaete chrysosporium
    (Elsevier Science Bv, 2002) Saglam, A.; Yalcinkaya, Y.; Denizli, A.; Arica, M.Y.; Genc, O.; Bektas, S.
    Phanerochaete chrysosporium basidiospores immobilized onto carboxymethylcellulose were used for the removal of mercury ions from aqueous solutions. The biosorption of Hg(II) ions onto carboxymethylcellulose and both immobilized live and heat-inactivated fungal mycelia of Phanerochaete chrysosporium was studied using aqueous solutions in the concentration range 30-700 mg l(-1). The biosorption of Hg(II) ions by the carboxymethylcellulose and both live and heat-inactivated immobilized preparations increased as the initial concentration of mercury ions increased in the medium. Maximum biosorption capacity for immobilized live and heat-inactivated fungal mycelia of Phanerochaete chrysosporium was found to be 83.10 and 102.15 mg Hg(II) g(-1), respectively, whereas the amount of Hg(II) ions adsorbed onto the plain carboxymethylcellulose beads was 39.42 mg g(-1). Biosorption equilibria were established in approximately 1 h and the correlation regression coefficients show that the adsorption process can be well defined by a Langmuir equation. Temperature changes between 15 and 45 C did not affect the biosorption capacity. The effect of pH was also investigated and the maximum adsorption of Hg(II) ions onto the carboxymethylcellulose and both live and heat-inactivated immobilized fungal mycelia was observed at pH 6.0. The carboxymethylcellulose-fungus beads could be regenerated using 10 mM HCl, with up to 95% recovery. The biosorbents were used in three biosorption-desorption cycles and no significant loss in the biosorption capacity was observed. (C)2002 Elsevier Science B.V All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Comparative biosorption of mercuric ions from aquatic systems by immobilized live and heat-inactivated Trametes versicolor and Pleurotus sajur-caju
    (Elsevier Sci Ltd, 2003) Arica, M.Y.; Arpa, C.; Kaya, B.; Bektas, S.; Denizli, A.; Genc, O.
    Trametes versicolor and Pleurotus sajur-caju mycelia immobilized in Ca-alginate beads were used for the removal of mercuric ions from aqueous solutions. The sorption of Hg(II) ions by alginate beads and both immobilized live and heat-killed fungal mycelia of T versicolor and P. sajur-caju was studied in the concentration range of 0.150-3.00 mmol dm(-3). The biosorption of Hg(II) increased as the initial concentration of Hg(II) ions increased in the medium. Maximum biosorption capacities for plain alginate beads were 0.144+/-0.005 mmol Hg(II)/g; for immobilized live and heat-killed fungal mycelia of T versicolor were 0.171+/-0.007 mmol Hg(II)/g and 0.383+/-0.012 mmol Hg(II)/g respectively; whereas for live and heat-killed P. sajur-caju, the values were 0.450+/-0.014 mmol Hg(II)/g and 0.660+/-0.019 mmol Hg(II)/g respectively. Biosorption equilibrium was established in about 1 h and the equilibrium adsorption was well described by Langmuir and Freundlich adsorption isotherms. Between 15 and 45 degreesC the biosorption capacity was not affected and maximum adsorption was observed between pH 4.0 and 6.0. The alginate-fungus beads could be regenerated using 10 mmol dm(-3) HCl solution, with up to 97% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Heat-killed T versicolor and P. sajur-caju removed 73% and 81% of the Hg(II) ions, respectively, from synthetic wastewater samples. (C) 2003 Elsevier Science Ltd. All rights reserved.

| Kırıkkale Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kırıkkale Üniversitesi, Kırıkkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim