Yazar "Guler, Seval Hale" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of Cu, Sn and Sb addition on the structural, thermal and magnetic properties of body-centered cubic structured CoNiMnGaSi high entropy alloy(Springer Heidelberg, 2022) Simsek, Telem; Ozkul, Iskender; Canbay, Canan Aksu; Avar, Baris; Simsek, Tuncay; Guler, Seval Hale; Ozcan, SadanIn this study structural, morphological, thermal and magnetic properties of equiatomic CoNiMnGaSi (base), CoNiMnGaSiCu, CoNiMnGaSiSn and CoNiMnGaSiSb alloys are discussed. The formation of solid-solution nanocrystalline bcc structure of the alloys was determined by XRD and DTA techniques. SEM-EDS analyses also revealed the homogeneous distribution of the elements. The room temperature magnetic hysteresis loops showed that as-casted alloys reached saturation easily with coercivity less than or equal to 35 Oe. As the Cu and Sn were added to the alloy, the saturation magnetization was decreased from 112 emu/g to 50 emu/g, which was mainly due to the substitution of non-magnetic atoms to the magnetic Co in the base CoNiMnGaSi alloy, whereas the addition of Sb to the base alloy did not have a significant effect on the M-s. The CoNiMnGaSiSb was found to have the highest Curie Temperature of 670 K, which makes the alloy a promising candidate for power industry-related applications.Öğe Effects of Cr and W in TiMoNb Refractory High Entropy Alloys(Springer India, 2024) Simsek, Tuncay; Kurtulus, Altug; Avar, Baris; Guler, Seval Hale; Dag, Ilker Emin; Chattopadhyay, Arun K.This study focuses on synthesizing and characterizing mechanically alloyed refractory high entropy alloys (RHEA) containing TiMoNb, Cr, W, and Cr + W. Analytical techniques including XRD, SEM, EDX, DTA, and TGA were employed to explore the influence of Cr and W on the alloys' structure, morphology, and thermal stability towards oxidation. XRD analysis confirmed the formation of a single-phase bcc solid solution in TiMoNbCr, TiMoNbW, and TiMoNbCrW alloys. Crystallite size decreased as milling progressed, yielding average sizes of approximately 7.2 nm, 7.4 nm, and 9.7 nm, with lattice strains of 1.143%, 1.148%, and 1.15%, respectively. Both experimental and calculated values of lattice parameters converged to around 3.1685 +/- 0.002 and 3.1791 +/- 0.010 angstrom for all three alloys. The synergy of Cr and W in TiMoNb was observed for the first time, impacting dislocation density, hardness, and oxidation stability. TiMoNbCrW exhibited reduced dislocation density and the highest hardness (502 HV). TGA indicated enhanced oxidation resistance up to 400 degrees C for TiMoNbCrW compared to the most vulnerable TiMoNbCr alloy.Öğe Possible Interaction of PVC with Micro-and Nano-fillers(Springer Science and Business Media Deutschland GmbH, 2024) Guler, Seval Hale; Simsek, Tuncay; Guler, Omer; Dikici, BurakUndoubtedly, polyvinyl chloride (PVC) is one of the most produced synthetic polymers globally and is used in all areas of life. Its general structure consists of hydrocarbon and chloride as well known. The main reasons for its widespread use in our life are low production cost, high mechanical strength, and chemical stability. The PVCs have significant problems such as low thermal resistance or weak impact strength. Thus, nowadays, the current studies are noteworthy on the PVC-matrix composites reinforced with micro-/nano-based fillers. The primary purpose of this studies improves the mechanical, physical, or chemical properties of PVC. Of course, the essential feature of a composite structure is the matrix/reinforcement interface and its interactions. In addition to the production method, the selection of matric and reinforcement fillers is the main factor affecting the adhesion and interactions between the interface. In this chapter, an overview of the possible interaction of PVC with micro- and nano-fillers is presented. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.