Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gunes, Yasin Celal" seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Comparative Analysis of Large Language Models in Simplifying Turkish Ultrasound Reports to Enhance Patient Understanding
    (Pera Yayincilik Hizmetleri, 2024) Gunes, Yasin Celal; Cesur, Turay; Camur, Eren
    Objective: To evaluate and compare the abilities of Language Models (LLMs) in simplifying Turkish ultrasound (US) findings for patients. Methods: We assessed the simplification performance of four LLMs: ChatGPT 4, Gemini 1.5 Pro, Claude 3 Opus, and Perplexity, using fifty fictional Turkish US findings. Comparison was based on Ate man's Readability Index and word count. Three radiologists rated medical accuracy, consistency, and comprehensibility on a Likert scale from 1 to 5. Statistical tests (Friedman, Wilcoxon, and Spearman correlation) examined differences in LLMs' performance. Results: Gemini 1.5 Pro, ChatGPT-4, and Claude 3 Opus received high Likert scores for medical accuracy, consistency, and comprehensibility (mean: 4.7-4.8). Perplexity scored significantly lower (mean: 4.1, p<0.001). Gemini 1.5 Pro achieved the highest readability score (mean: 61.16), followed by ChatGPT-4 (mean: 58.94) and Claude 3 Opus (mean: 51.16). Perplexity had the lowest readability score (mean: 47.01). Gemini 1.5 Pro and ChatGPT-4 used significantly more words compared to Claude 3 Opus and Perplexity (p<0.001). Linear correlation analysis revealed a positive correlation between word count of fictional US findings and responses generated by Gemini 1.5 Pro (correlation coefficient = 0.38, p<0.05) and ChatGPT-4 (correlation coefficient = 0.43, p<0.001). Conclusion: This study highlights strong potential of LLMs in simplifying Turkish US and Claude 3 Opus performed well, highlighting their effectiveness in healthcare communication. Further research is required to fully understand the integration of making.
  • [ X ]
    Öğe
    Comparison of the performance of large language models and general radiologist on Ovarian-Adnexal Reporting and Data System (O-RADS)-related questions
    (Ame Publishing Company, 2024) Camur, Eren; Cesur, Turay; Gunes, Yasin Celal
    [Abstract No tAvailable]
  • [ X ]
    Öğe
    Correspondence on 'Evaluation of ChatGPT in knowledge of newly evolving neurosurgery: middle meningeal artery embolization for subdural hematoma management' by Koester et al
    (Bmj Publishing Group, 2024) Gunes, Yasin Celal; Camur, Eren; Cesur, Turay
    [Abstract No tAvailable]
  • [ X ]
    Öğe
    Large Language Models: Could They Be the Next Generation of Clinical Decision Support Systems in Cardiovascular Diseases?
    (Kare Publ, 2024) Gunes, Yasin Celal; Cesur, Turay
    [Abstract No tAvailable]
  • [ X ]
    Öğe
    Letter to Editor Regarding Assessing the Capability of ChatGPT, Google Bard, and Microsoft Bing in Solving Radiology Case Vignettes
    (Thieme Medical Publ Inc, 2024) Gunes, Yasin Celal; Cesur, Turay
    [Abstract No tAvailable]
  • [ X ]
    Öğe
    Letter to the Editor
    (Springer, 2024) Gunes, Yasin Celal
    [Abstract No tAvailable]

| Kırıkkale Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kırıkkale Üniversitesi, Kırıkkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim