Yazar "Gzara, Fatma" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Column generation based solution for bi-objective gate assignment problems(Springer Heidelberg, 2024) Das, Gulesin Sena; Gzara, FatmaIn this paper, we present a column generation-based algorithm for the bi-objective gate assignment problem (GAP) to generate gate schedules that minimize squared slack time at the gates while satisfying passenger expectations by minimizing their walking distance. While most of the literature focuses on heuristic or metaheuristic solutions for the bi-objective GAP, we propose flow-based and column-based models that lead to exact or near optimal solution approaches. The developed algorithm calculates a set of solutions to approximate the Pareto front. The algorithm is applied to the over-constrained GAP where gates are a limited resource and it is not possible to serve every flight using a gate. Our test cases are based on real data from an international airport and include various instances with flight-to-gate ratios between 23.9 and 34.7. Numerical results reveal that a set of solutions representing a compromise between the passenger-oriented and robustness-oriented objectives may be obtained with a tight optimality gap and within reasonable computational time even for these difficult problems.Öğe A review on airport gate assignment problems: Single versus multi objective approaches(PERGAMON-ELSEVIER SCIENCE LTD, 2020) Das, Gulesin Sena; Gzara, Fatma; Stutzle, ThomasAssigning aircraft to gates is an important decision problem that airport professionals face every day. The solution of this problem has raised a significant research effort and many variants of this problem have been studied. In this paper, we review past work with a focus on identifying types of formulations, classifying objectives, and categorising solution methods. The review indicates that there is no standard formulation, that passenger oriented objectives are most common, and that more recent work are multi-objective. In terms of solution methods, heuristic and metaheuristic approaches are dominant which provides an opportunity to develop exact and approximate approaches both for the single and multi-objective problems. (C) 2019 Elsevier Ltd. All rights reserved.