Yazar "Ikizceli, Turkan" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Detection of breast cancer via deep convolution neural networks using MRI images(SPRINGER, 2020) Yurttakal, Ahmet Hasim; Erbay, Hasan; Ikizceli, Turkan; Karacavus, SeyhanBreast cancer is the type of cancer that develops from cells in the breast tissue. It is the leading cancer in women. Early detection of the breast cancer tumor is crucial in the treatment process. Mammography is a valuable tool for identifying breast cancer in the early phase before physical symptoms develop. To reduce false-negative diagnosis in mammography, a biopsy is recommended for lesions with greater than a 2% chance of having suspected malignant tumors and, among them, less than 30 percent are found to have malignancy. To decrease unnecessary biopsies, recently, Magnetic Resonance Imaging (MRI) has also been used to diagnose breast cancer. MRI is the highly recommended test for detecting and monitoring breast cancer tumors and interpreting lesioned regions since it has an excellent capability for soft tissue imaging. However, it requires an experienced radiologist and time-consuming process. On the other hand, convolutional neural networks (CNNs) have demonstrated better performance in image classification compared to feature-based methods and show promising performance in medical imaging. Herein, CNN was employed to characterize lesions as malignant or benign tumors using MRI images. Using only pixel information, a multi-layer CNN architecture with online data augmentation was designed. Later, the CNN architecture was trained and tested. The accuracy of the network is 98.33% and the error rate 0.0167. The sensitivity of the network is 1.0 whereas specificity is 0.9688. The precision is 0.9655.Öğe Diagnosing breast cancer tumors using stacked ensemble model(Ios Press, 2022) Yurttakal, Ahmet Hasim; Erbay, Hasan; Ikizceli, Turkan; Karacavus, Seyhan; Bicer, CenkerBreast cancer is the most common cancer that progresses from cells in the breast tissue among women. Early-stage detection could reduce death rates significantly, and the detection-stage determines the treatment process. Mammography is utilized to discover breast cancer at an early stage prior to any physical sign. However, mammography might return false-negative, in which case, if it is suspected that lesions might have cancer of chance greater than two percent, a biopsy is recommended. About 30 percent of biopsies result in malignancy that means the rate of unnecessary biopsies is high. So to reduce unnecessary biopsies, recently, due to its excellent capability in soft tissue imaging, Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been utilized to detect breast cancer. Nowadays, DCE-MRI is a highly recommended method not only to identify breast cancer but also to monitor its development, and to interpret tumorous regions. However, in addition to being a time-consuming process, the accuracy depends on radiologists' experience. Radiomic data, on the other hand, are used in medical imaging and have the potential to extract disease characteristics that can not be seen by the naked eye. Radiomics are hard-coded features and provide crucial information about the disease where it is imaged. Conversely, deep learning methods like convolutional neural networks(CNNs) learn features automatically from the dataset. Especially in medical imaging, CNNs' performance is better than compared to hard-coded features-based methods. However, combining the power of these two types of features increases accuracy significantly, which is especially critical in medicine. Herein, a stacked ensemble of gradient boosting and deep learning models were developed to classify breast tumors using DCE-MRI images. The model makes use of radiomics acquired from pixel information in breast DCE-MRI images. Prior to train the model, radiomics had been applied to the factor analysis to refine the feature set and eliminate unuseful features. The performance metrics, as well as the comparisons to some well-known machine learning methods, state the ensemble model outperforms its counterparts. The ensembled model's accuracy is 94.87% and its AUC value is 0.9728. The recall and precision are 1.0 and 0.9130, respectively, whereas F1-score is 0.9545.Öğe Discrimination of malignant and benign breast masses using computer-aided diagnosis from dynamic contrast-enhanced magnetic resonance imaging(Galenos, 2021) Ikizceli, Turkan; Karacavus, Seyhan; Erbay, Hasan; Yurttakal, AhmetAim: To reduce operator dependency and achieve greater accuracy, the computer-aided diagnosis (CAD) systems are becoming a useful tool for detecting noninvasively and determining tissue characterization in medical images. We aimed to suggest a CAD system in discriminating between benign and malignant breast masses. Methods: The dataset was composed of 105 randomly breast magnetic resonance imaging (MRI) including biopsy-proven breast lesions (53 malignant, 52 benign). The expectation-maximization (EM) algorithm was used for image segmentation. 2D-discrete wavelet transform was applied to each region of interests (ROIs). After that, intensity-based statistical and texture matrix-based features were extracted from each of the 105 ROIs. Random Forest algorithm was used for feature selection. The final set of features, by random selection base, splatted into two sets as 80% training set (84 MRI) and 20% test set (21 MRI). Three classification algorithms are such that decision tree (DT, C4.5), naive bayes (NB), and linear discriminant analysis (LDA) were used. The accuracy rates of algorithms were compared. Results: C4.5 algorithm classified 20 patients correctly with a success rate of 95.24%. Only one patient was misclassified. The NB classified 19 patients correctly with a success rate of 90.48%. The LDA Algorithm classified 18 patients correctly with a success rate of 85.71%. Conclusion: The CAD equipped with the EM segmentation and C4.5 DT classification was successfully distinguished benign and malignant breast tumor on MRI. © 2021 by The Medical Bulletin of İstanbul Haseki Training and Research Hospital The Medical Bulletin of Haseki published by Galenos Yayınevi.