Yazar "Ismarrubie, Z. N." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Agro-waste shaped porous Al2O3/Ni composites: Corrosion resistance performance and artificial neural network modelling(Elsevier Science Inc, 2018) Dele-Afolabi, T. T.; Hanim, M. A. Azmah; Norkhairunnisa, M.; Sobri, S.; Calin, R.; Ismarrubie, Z. N.In the present study, an analysis on the combined effect of nickel (Ni) reinforcement and pore former type in characterizing the corrosion behavior of composite porous alumina ceramics was performed. In order to showcase the potential of the new porous ceramics, pore-forming agents (PFAs) from rice husk (RH) and sugarcane bagasse (SCB) were used in shaping the plain and composite porous alumina samples having sample formulation of Al2O3-xNi-PFA; x = 0, 2, 4, 6 and 8 wt%. Results showed that the emergence of a highly stable Ni3Al2SiO8 spinelloid phase in the RH-graded composites enhanced their chemical stability in the corrosive mediums (10 wt% NaOH and 20 wt% H2SO4) relative to the plain and the corresponding SCB-graded counterparts. An artificial neural network (ANN) model has been developed for predicting the corrosion behavior of the plain and composite porous alumina ceramics based on the experimental data. The developed ANN model satisfactorily predicted the percent mass losses of the porous ceramics in strong alkali and strong acid solutions with coefficient of determination (R-2) of approximately 0.99.Öğe Significant effect of rice husk and sugarcane bagasse pore formers on the microstructure and mechanical properties of porous Al2O3/Ni composites(Elsevier Science Sa, 2018) Dele-Afolabi, T. T.; Hanim, M. A. Azmah; Norkhairunnisa, M.; Sobri, S.; Calin, R.; Ismarrubie, Z. N.Porous alumina systems are suitable for application in wide-ranging industrial processes that require extreme service conditions such as high temperatures and corrosive mediums due to their remarkable thermal and chemical stability. Given the inherent brittleness of ceramics and their high sensitivity to thermo-mechanical loading, large-scale production of porous alumina components is constrained. In this study, the reinforcement of porous alumina ceramics with nickel (Ni) particles has been reported. Plain and Ni-reinforced porous alumina ceramics were developed through the powder metallurgy method with agro-waste materials from rice husk (RH) and sugarcane bagasse (SCB) as the pore-forming agents (PFAs). Experimental results showed that the formation of a stable Ni3Al2SiO8 spinelloid phase in the RH-graded composites actuated the emergence of a relatively refined microstructure while on the other hand, microstructural defects such as dislocated grains and localized voids were observed for the SCB-graded counterparts due to the presence of poorly crystallized NiAl2O4 spinel phase. Generally from the mechanical strength characterization, an inverse relationship was established between the mechanical properties and Ni reinforcement which agrees well with the Griffith's model. Moreover, the strengthening effect of the Ni3Al2SiO8 spinelloid phase was well marked in the RH-graded composites as maximum hardness, tensile and compressive strengths of 167.3HV, 12.6 MPa and 55.3 MPa respectively were achieved for the composite reinforced with 2 wt% Ni. (c) 2018 Elsevier B.V. All rights reserved.Öğe Tensile strength and corrosion resistance properties of porous Al2O3/Ni composites prepared with rice husk pore-forming agent(Elsevier Sci Ltd, 2018) Dele-Afolabi, T. T.; Hanim, M. A. Azmah; Norkhairunnisa, M.; Sobri, S.; Calin, R.; Ismarrubie, Z. N.The mechanical performance and chemical stability of porous alumina materials operating under harsh service conditions are of utmost importance in understanding their operational behavior if they are to stand the test of time. In the present study, the joint effect of nickel (Ni) reinforcement and rice husk (RH) pore-forming agent (PFA) on the tensile strength and the corrosion resistance properties of composite porous alumina ceramics was studied. To exploit the potential of this new porous alumina system, plain and Ni-reinforced porous alumina samples (Al2O3-xNi-RH; x = 2, 4, 6 and 8 wt%) were developed through the powder metallurgy technique. Comprehensive investigation on the tensile strength properties of the developed porous alumina ceramics showed that relative to the plain sample (tensile strength and elastic modulus; 6.1 MPa and 1201 MPa), the presence of highly stable Ni3Al2SiO8 spinelloid promoted the tensile strength enhancement (12.6-6.4 MPa) and the elastic modulus decline (897-627 MPa) of the composite samples. Similarly, corrosion resistance test was performed on the composite porous alumina samples in both 10wt% NaOH and 20wt% H2SO4 hot aqueous solutions. Overall, the composite samples demonstrated superior chemical stability in NaOH solution as compared with the plain sample. On the other hand, the composites were more prone to attack in H2SO4 solution, except for the Al2O3-2Ni-10RH composite sample which maintained its superiority over the plain counterpart.