Yazar "Kaya, Senol" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Evolution of operable slip systems, lattice strain fields and morphological view of Bi-2223 ceramic system with optimum NiO addition(Elsevier, 2023) Mercan, Ali; Kara, Emre; Dogan, Muhsin Ugur; Kaya, Senol; Terzioglu, Rifki; Erdem, Umit; Yildirim, GurcanThe current work extensively reveals the influence of different nickel oxide (NiO) impurity addition levels on the morphological, microstructural, key mechanical performance, and mechanical characteristic properties of Bi1.8Pb0.4Ca2.2Sr2Cu3Oy (Bi-2223) ceramics using scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and Vickers micro-indentation (Hv) hardness measurements. It was observed that the addition of NiO impurity in the Bi-2223 crystal structure affected seriously the fundamental characteristic features. In the case of the optimum NiO concentration level of x = 0.1, the Bi-2223 materials exhibited the best crystallinity quality and coupling strengths between the adjacent layers, the most uniform surface view, and the densest, and the smoothest crystal structure. Similarly, the compound was noted to possess the hardest, highest mechanical strength, durable tetragonal phase, resistance toward failure by fatigue, and elastic recovery properties. Besides, it was observed that the characteristic Bi-2223 superconducting phase fraction and stabilization of the tetragonal crystal system reached the maximum level for the optimum concentration. Moreover, optimum NiO particles brought about a considerable increase in the number of operable slip systems, surface residual compressive force regions, and lattice strain fields. Correspondingly, the mobility of defects was blocked significantly depending on the preference of defects through transcrystalline regions. Additionally, optimum addition strengthened the typical indentation size effect due to the improvement of the recovery mechanism. In this regard, the NiO-added sample exhibited the least response to the applied loads. Thus, the Bi-2223 sample with the optimum NiO concentration was found to present the highest hardness parameter of 0.496 GPa, greatest elastic deformation value of 16.493 GPa, largest stiffness value of 1.044 MN/m, and smallest contact depth of 5.849 mu m. On the other hand, after the optimum concentration level of x = 0.1, there appeared serious increase in problems including internal defects, impurity residues, microscopic structural problems, and connection problems between the grains. All experimental findings were theoretically supported by semi-empirical mechanical methods. To sum up, the addition of NiO particles was noticed to increase the potential application areas of Bi-2223 ceramics.Öğe Improvement in deformation degree of Zr surface-layered Bi-2223 ceramics by diffusion annealing temperature(Elsevier Sci Ltd, 2023) Mercan, Ali; Terzioglu, Rifki; Dogan, Muhsin Ugur; Kaya, Senol; Erdem, Umit; Yildirim, Gurcan; Terzioglu, CabirThis study investigated the effects of different annealing temperatures (650 degrees C <= T <= 840 degrees C) on the surface morphological and mechanical performance properties of Zr surface-layered Bi-2223 materials with scanning electron microscopy (SEM) images, Vickers microhardness (Hv) measurements, and semi-empirical mechanical approaches. It was observed that the ceramic compound exposed to 650 degrees C annealing temperature exhibited the superior performance features due to the enhancement in the deformation degree. This is because the Zr ions behaved as the nucleation centers to prevent the propagations of cracks and dislocations throughout the main matrix depending on the decrease in the degree of granularity and distributions of crystal structure problems over a wider area. Similarly, the SEM pictures indicated that the diffusion mechanism increased the random distributions of the thinner plate-like granular structures (serving as nucleation centers), leading the decrease in the coupling problems between the grains. Among the materials, the highest surface densification was observed for the compound exposed to 650 degrees C. Namely, surface morphological analysis showed a strong correlation be-tween microstructure and mechanical performances. Further, the zirconium ions were found to decrease in the non-recoverable stress concentration sites, crack-initiating defects, and dislocations in the ceramic system. Accordingly, the sensitivity to the applied test load was noted to decrease dramatically. Shortly, crack growth size and velocity were observed to be more easily under control. Correspondingly, the Zr ions delayed consid-erably the beginning points of saturation limit (load-independent) regions for the bulk Bi-2223 superconducting materials. Additionally, the Zr ions led to the change in the mechanical characteristic behavior from typical indentation size effect to reverse indentation size effect. Lastly, the microindentation hardness measurements were semi-empirically analyzed by the different models. According to the comparison, Hays-Kendall mechanical model was noted to provide the closest parameters to the load-independent microhardness results.