Yazar "Korkmaz, Nesrin" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comprehensive analysis of a CI engine fuelled with blends of diesel fuel/ safflower seed oil biodiesel/ TiO2 or SiO2 nanoparticles produced by green synthesis technique(Elsevier, 2024) Dogan, Battal; Yesilyurt, Murat Kadir; Yaman, Hayri; Korkmaz, Nesrin; Arslan, AhmetIt can be confidently stated that there is limited research on the usability of nanoparticles as alternative fuel additives for diesel fuel (DF), particularly those produced from organic substances through the green synthesis method. On this basis, the present research focused on the usability of the fuels formed by adding metal-based titanium dioxide (TiO2) and silicon dioxide (SiO2) nanoparticles produced through green synthesis technique at different ratios to safflower oil biodiesel and commercial DF blends considering the thermodynamic, economic, and environmental analyses. In this sense, performance and emission tests were carried out in a single-cylinder diesel engine at four ranging loads (25 %, 50 %, 75 %, and 100 %) at a fixed speed of 1500 rpm. To conclude, the exergy efficiency enhanced as the load increased. Actually, for B10Si50 blend at 25 %, 50 %, 75 %, and 100 % loads, the exergy efficiency was calculated to be 16.46 %, 19.48 %, 21.08 %, and 21.95 %, respectively. As the amount of biodiesel infused to DF increased, the cost of losses went up gradually. In this context, the cost of losses for DF was calculated as 2.099 USD/h at the maximum engine load, meanwhile the cost of losses for B10 and B20 was figured out to be 2.326 USD/h and 2.487 USD/h, respectively. At the peak load, the ratio of the power taken from the engine shaft to the cost achieved for DF was 129.76 USD/GJ, while it was found to be 151.55 USD/GJ for B20. In addition, it was determined as 191.21 USD/GJ for B20Si250 fuel and 197.97 USD/GJ for B20Ti250. As stated in the exergoenviroeconomic analysis findings, the cost of monthly CO2 emissions ascended as the amount of nanoparticles augmented regardless of the type of fuel blends. At 75 % engine load, the cost of CO2 emissions for B20Si50 fuel was notified as 43.89 USD/month whereas it was found to be 47.74 USD/month for B20Si250.Öğe Green synthesis of SiO2 and TiO2 nanoparticles using safflower (Carthamus tinctorius L.) leaves and investigation of their usability as alternative fuel additives for diesel-safflower oil biodiesel blends(Elsevier Sci Ltd, 2024) Dogan, Battal; Yesilyurt, Murat Kadir; Yaman, Hayri; Korkmaz, Nesrin; Arslan, AhmetResearch into alternative fuels for diesel engines is currently focusing on the utilization of nanoparticles (NPs) as a promising solid fuel additive. The basis of such studies is to investigate the possibilities of using solid-liquid mixtures in internal combustion engines (ICEs). In general, NPs are commercially sold and readily available. On the other hand, NPs that can be produced from biomass through green synthesis have recently been preferred because of their environmental -friendly, low cost, and low toxicity. In the present study, therefore, the influence of alternative fuels to be prepared by adding metal -based silicon dioxide (SiO2) and titanium dioxide (TiO2) NPs obtained by green synthesis using safflower (Carthamus tinctorius L.) leaves to diesel -safflower seed oil biodiesel (SSOB) blends (B10 and B20) at varying levels (50, 100, and 250 ppm) on the engine performance and emissions was extensively examined under laboratory conditions. While the particle size of the synthesized SiO2 NPs was calculated as approximately 41 nm, the particle size of TiO2 NPs was calculated as 47 nm. Additionally, it was observed that the obtained NPs generally had spherical and irregular particle structures. The presence of SiO2 (Si: 21.2 %, O 67.3 %) and TiO2 (Ti: 50.7 %, O: 45.8 %) was confirmed by EDX analysis. On the basis of the engine tests, the highest fuel consumption was calculated to be 2.132 kg/h for the B20Ti250 at the highest load. It was pointed out that the fuel blends including NPs descended CO and HC emissions whereas ascended NOx emissions. At 75 % load, the CO2 emissions for diesel fuel (DF), B20, and B20Ti250 were 0.468, 0.491, and 0.502 kg/kWh, respectively.