Yazar "Kutlu, Hatice Mehtap" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A safety investigation into topical effects of naproxen sodium on nasal epithelial cells and potential toxicity in local application(W B Saunders Co-Elsevier Inc, 2023) Dundar, Riza; Muluk, Nuray Bayar; Sezer, Canan Vejselova; Kaya, Furkan; Kutlu, Hatice Mehtap; Cingi, CemalObjectives: We examined how topically-applied naproxen sodium affects human nasal epitheliocytes in culture. Methods: Samples of healthy human primary nasal epithelium (NE) harvested during septoplasty from volunteers without rhinosinusitis were incubated in cell culture. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays may be utilised when assessing cellular damage (toxicity), as evidenced by DNA fragmentation, nuclear condensation, alteration in the outer plasma membrane and cytoskeletal alteration. This was the method used in the study. Cultured epitheliocytes were incubated with naproxen sodium for 24 h at 37 ???C. The MTT assay was then performed and the cells' morphology was examined by confocal microscopy. Additionally, cellular proliferation was assessed by the artificial scratch method followed by light microscopy. Results: The results indicated that naproxen sodium does not cause any cytotoxic effects upon nasal epithelial cells when applied topically. There was no evidence indicating cytotoxicity on the nasal epitheliocytes in culture for the 24 h period over which the drug was applied. In particular, there was no alteration in cellular morphology, damage to the intracellular organelles structure or the cytoskeleton secondary to naproxen sodium. Furthermore, cellular proliferation occurred normally in these conditions, as on scratch test. Conclusion: Topical naproxen sodium may be used on nasal epithelial cells without inducing toxicity. This agent is therefore suitable, given its known anti-inflammatory effects, for use in patients suffering from diseases involving nasal and paranasal sinusal inflammation, including rhinosinusitis (both chronic and acute) and nasal polyposis which should be investigated. In the future, topical medication forms for nasal usage should be developed.Öğe The Potential Protective Effects of 2-aminoethyl Diphenylborinate against Inner Ear Acoustic Trauma: Experimental Study Using Transmission and Scanning Electron Microscopy(Aves, 2015) Kaymakci, Mustafa; Acar, Mustafa; Burukoglu, Dilek; Kutlu, Hatice Mehtap; Shojaolsadati, Paria; Cingi, Cemal; Muluk, Nuray BayarOBJECTIVE: In this prospective experimental study, we investigated the preventive effects of 2-aminoethyl diphenylborinate (2-APB) in rats exposed to acoustic trauma (AT). Light microscopic, transmission electron microscopic (TEM), and scanning electron microscopic (SEM) examinations were performed. MATERIALS and METHODS: Eighteen healthy Wistar albino rats were divided into the following three groups: groups 1 (control), 2 (AT), and 3 (AT+APB). The rats in groups 2 and 3 were exposed to AT; in group 3 rats, 2-APB at 2 mg/kg was also administered, initially transperitoneally, after 10 min. RESULTS: During the light microscopic, TEM, and SEM examinations, the structures of the cochlear hair cells, stereocilia, and Deiter's cells were normal in the control group. In the AT group, the organ of Corti and proximate structures were damaged according to the light microscopic examination. During the TEM examination, intense cellular damage and stereocilia loss were detected, while during the SEM examination, extensive damage and stereocilia loss were observed. Decreased damage with preserved cochlear structure was detected during the light microscopic examination in the AT+APB group than in the AT group. During the TEM and SEM examinations, although stereocilia loss occurred in the AT+APB group, near-normal cell, cilia, and tectorial membrane structures were also observed in the AT+APB group compared with the AT group. CONCLUSION: 2-APB may have protective effects against AT damage of the cochlea. The main mechanism underlying this effect is the inhibition of the vasoconstriction of the cochlear spiral modiolar artery, thereby improving cochlear blood flow. We conclude that 2-APB may also be effective if used immediately following AT.