Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Nurettin, Abdulhamit" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Design of a robust hybrid fuzzy super-twisting speed controller for induction motor vector control systems
    (Springer London Ltd, 2022) Nurettin, Abdulhamit; Inanc, Nihat
    This paper deals with a new design of a hybrid fuzzy super-twisting sliding mode controller (HFSTSMC) for a three-phase induction motor (IM) controlled by the rotor flux orientation technique. Super-twisting sliding mode control is employed as a potential solution to limit the inherent chattering effect in the conventional sliding mode control without affecting the tracking accuracy and robustness. The super-twisting sliding mode control (STSMC) scheme is a modified second-order sliding mode control (SOSMC) scheme that does not need the information of any derivative of the sliding surface, but the experimental control coefficients found in the control law have an obvious effect on limiting chattering and the system response speed. Therefore, a robust hybrid controller was proposed based on the fuzzy logic control (FLC) approach to optimally tuning these coefficients. Whereas, the fuzzy logic controller is used as a supervisory controller to adjust the value of the gains according to the state of the system. Thus, providing high dynamic performance and achieving the highest rates of robustness in transient and uncertain conditions. On the other hand, increasing tracking accuracy and chattering phenomena reduction in steady states. The validation of the suggested scheme is verified by experimental approximating of simulations using MATLAB/SIMULINK and also compared with conventional and advanced controllers. The obtained results confirm the reduction of the chattering phenomenon and thus reduction of the total harmonic distortion (THD) in the motor current, and the effectiveness of the proposed scheme in various operating conditions.
  • [ X ]
    Öğe
    High-Performance Induction Motor Speed Control Using a Robust Hybrid Controller With a Supertwisting Sliding Mode Load Disturbance Observer
    (IEEE-Inst Electrical Electronics Engineers Inc, 2023) Nurettin, Abdulhamit; Inanc, Nihat
    To enhance the speed control performance of a three-phase induction motor controlled by the vector control strategy, a new design of a hybrid controller (HC) is proposed based on the supertwisting algorithm (STA) and fuzzy approach. STA is chosen for its ability to decrease the ingrained chattering phenomenon in the classical sliding mode control with maintaining tracking precision and robustness. Nevertheless, the control gains included in the control law have an evident impact on suppressing the chattering phenomenon and increasing the system's dynamic response speed. Therefore, first, a robust HC based on the fuzzy logic control approach that operates as a fuzzy supervisor to online self-tune the value of the gains according to the system states is suggested to achieve high dynamic performance and limit the chattering effect. Second, to enhance the disturbance refusal capability, a supertwisting sliding mode load disturbance observer is developed to estimate the load torque disturbances. Then, the estimated disturbance is introduced into the equivalent control law. Subsequently, the system stability is verified by the Lyapunov theorem. Finally, the superiority of the proposed scheme is validated through comparison with the advanced and traditional controllers in simulation and experimental studies.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Sensorless Vector Control for Induction Motor Drive at Very Low and Zero Speeds Based on an Adaptive-Gain Super-Twisting Sliding Mode Observer
    (IEEE-Inst Electrical Electronics Engineers Inc, 2023) Nurettin, Abdulhamit; İnanç, Nihat
    To achieve a balance between estimation accuracy and the chattering problem for sensorless induction motor IM drive systems at very low and zero speeds, an adaptive-gain super-twisting sliding mode observer (AGSTSMO) is proposed. The value of the adaptive gains (experimental observer coefficients) in the control law is assigned utilizing Lyapunov stability theory to ensure expeditious convergence of the estimated variables to improve the accuracy and suppress chattering at very low and zero speeds operation. The AGSTSMO eliminates the need to use a low-pass filter to obtain the equivalent control, as in the traditional first-order sliding-mode observer, which causes a delay in estimating the equivalent control law. Simulation and experimental results are shown under different operating conditions to illustrate the effectiveness of the suggested approach, which achieves excellent estimation precision and chattering elimination capability simultaneously, thus increasing robustness versus deviations of the motor parameters. Moreover, to prove the superiority and efficiency of the proposed observer is compared to that of a super-twisting sliding mode observer (STSMO) under various operating conditions.

| Kırıkkale Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kırıkkale Üniversitesi, Kırıkkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim