Yazar "Rad, Soheil Ershad" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Monolayer diboron dinitride: Direct band-gap semiconductor with high absorption in the visible range(AMER PHYSICAL SOC, 2020) Demirci, Salih; Rad, Soheil Ershad; Kazak, Sahmurat; Nezir, Saffet; Jahangirov, SeymurWe predict a two-dimensional monolayer polymorph of boron nitride in an orthorhombic structure (o-B2N2) using first-principles calculations. Structural optimization, phonon dispersion, and molecular dynamics calculations show that o-B2N2 is thermally and dynamically stable. o-B2N2 is a semiconductor with a direct band gap of 1.70 eV according to calculations based on hybrid functionals. The structure has high optical absorption in the visible range in the armchair direction while low absorption in the zigzag direction. This anisotropy is also present in electronic and mechanical properties. The in-plane stiffness of o-B2N2 is very close to that of hexagonal boron nitride. The diatomic building blocks of this structure hint at its possible synthesis from precursors having B-B and N-N bonds.Öğe Strain engineering of electronic and optical properties of monolayer diboron dinitride(Amer Physical Soc, 2021) Demirci, Salih; Rad, Soheil Ershad; Jahangirov, SeymurWe studied the effect of strain engineering on the electronic, structural, mechanical, and optical properties of orthorhombic diboron dinitride (o-B2N2) through first-principles calculations. The 1.7-eV direct band gap observed in the unstrained o-B2N2 can be tuned up to 3 eV or down to 1 eV by applying 12% tensile strain in armchair and zigzag directions, respectively. Ultimate strain values of o-B2N2 were found to be comparable with that of graphene. Our calculations revealed that the partial alignment of the band edges with the redox potentials of water in pristine o-B2N2 can be tuned into a full alignment under the armchair and biaxial tensile strains. The anisotropic charge carrier mobility found in o-B2N2 prolongs the average lifetime of the carrier drift, creating a suitable condition for photoinduced catalytic reactions on its surface. Finally, we found that even in extreme straining regimes, the highly anisotropic optical absorption of o-B2N2 with strong absorption in the visible range is preserved. Having strong visible light absorption and prolonged carrier migration time, we propose that strain engineering is an effective route to tune the band gap energy and band alignment of o-B2N2 and turn this two-dimensional material into a promising photocatalyst for efficient hydrogen production from water splitting.