Yazar "Salunkhe, Sachin" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Electrodeposition of Zn/TiO2 coatings on Ti6Al4V produced by selective laser melting, the characterization and corrosion resistance(Iop Publishing Ltd, 2024) Gunduz, Demet Ozaydin; Kucukturk, Gokhan; Pul, Muharrem; Salunkhe, Sachin; Kaya, Duran; Kabalci, Mehmet; Cep, RobertRecently, additive manufacturing techniques have begun to be implemented extensively in the production of implants. Ti6Al4V alloy is a material of choice for implants due to its low density and high biocompatibility. Recent research, however, has demonstrated that Ti6Al4V alloy emits long-term ions (such as Al and V) that are hazardous to health. Surface modifications, including coating, are therefore required for implants. The electrodeposition method was utilized to deposit Zn-doped TiO2 onto the surfaces of Ti6Al4V samples, which were manufactured via the selective laser melting method. The effects of processing time, amount of TiO2 addition, microstructure of anode materials, and resistance to wear and corrosion were investigated. The coating hardness and thickness increased with increasing processing time and TiO2 concentration. It has been observed that the addition of TiO2 to zinc anode coatings results in an increase in wear and a decrease in corrosion rate. It was noted that the specimens exhibiting the most significant wear also possessed the highest hardness value. The specimens were generated utilizing a graphite anode, underwent a 30-min processing time, and comprised 10 g l(-1) of TiO2.Öğe Investigation of the effect of lubricant properties of carbon nanomaterial in Cu/MWCNT composites on wear(Frontiers Media Sa, 2024) Pul, Muharrem; Yilmazel, Rustem; Erten, Mustafa Yasin; Kucukturk, Gokhan; Kaya, Duran; Salunkhe, Sachin; Zumrut, YavuzThis experimental study investigated the abrasive wear behaviour of pure copper-based and multi-walled carbon nanotube (MWCNT) doped composites synthesized by the powder metallurgy technique. Composite structures were formed by reinforcing MWCNT at different ratios between 1% and 8% in 99.9% pure copper by powder metallurgy. The microstructures of the nanocomposite samples were analyzed by X-ray diffraction. Then, density and hardness measurements and abrasive wear tests were performed to determine their mechanical properties. The collected data were evaluated with scanning electron microscopy images. It has been determined that copper's nano-sized carbon reinforcement material has a dry lubricant effect up to a specific ratio, reducing wear losses. On the contrary, wear losses increase as the MWCNT reinforcement ratio increases between 4% and 8%. The best results in lowering wear losses were obtained from the sample with 1% MWCNT reinforcement. Depending on the increase in the amount of nanomaterial reinforcement in the composite structure, it was observed that pore formation enlarges with reinforcement agglomeration. It was concluded that the dense porosity in the composite structure neglects the lubricating properties of the MWCNT reinforcement material and increases the wear losses by having a negative effect.Öğe Optimization of PMEDM process parameters for B4C and B4C+SiC reinforced AA7075 composites(Elsevier B.V., 2024) Keskin, Gözde; Salunkhe, Sachin; Küçüktürk, Gökhan; Pul, Muharrem; Gürün, Hakan; Baydaroğlu, VolkanMaterials: With sufficient electrical conductivity can be successfully processed by applying the electrical discharge machining (EDM) method; however, due to the presence of non-conductive particles in composites, which have been produced by adding ceramics particles, problems such as unstable machining, low material removal rate, and high tool wear are observed during the EDM. This study employed powder-mixed electrical discharge machining (PMEDM) by adding electrically conductive nano-size graphite powder into the dielectric liquid to minimize these problems. Moreover, the machinability of AA7075/ B4C and AA7075/ B4C+SiC composites was evaluated using the Taguchi method. The experimental study used L18 orthogonal array (OA) (21 ×32). ANOVA was employed to obtain significant parameters and percent contributions of variable parameters on the material removal rate (MRR). Reinforcement ratio, current and sintering time applied to the workpiece were chosen as variable parameters. The optimum parameters for MRR were obtained at A1B3C3 (reinforcement ratio= 10%, current= 8 A, sintering time=150 min). According to S/N ratio graphs, increasing the reinforcement ratio leads to a decreased MRR. On the contrary, when the applied current increases, MRR increases. Additionally, analysis results show that the discharge current is the most important parameter affecting MRR. In the morphological examinations, it was understood that the amounts of B4C and SiC particles in the composite structure affect the quality of the machined surfaces. It was determined that the surface quality deteriorated with the increase in the amount of SiC and B4C in the composite structure and the increase in the discharge current. © 2023 The Authors