Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Torul, Hilal" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Glucose determination based on a two component self-assembled monolayer functionalized surfaceenhanced Raman spectroscopy (SERS) probe
    (Royal Soc Chemistry, 2014) Torul, Hilal; Ciftci, Hakan; Dudak, Fahriye Ceyda; Adiguzel, Yekbun; Kulah, Haluk; Boyaci, Ismail Hakki; Tamer, Ugur
    In this report, we present a new detection method for blood glucose, using gold nanorod SERS, a surface enhanced Raman scattering probe embedded in two component self-assembled monolayers (SAMs). Gold nanorod particles and a gold coated slide surface were modified with the two component SAMs consisting of 3-mercaptophenylboronic acid (3-MBA) and 1-decanethiol (1-DT). The immobilization of 3-MBA/1-DT surface-functionalized gold nanoparticles onto 3-MBA/1-DT modified gold-coated slide surfaces was achieved by the cooperation of hydrophobic forces. Two component SAM functionalized substrates were used as SERS probes, by means of the boronic acid and the alkyl spacer functional groups that serve as the molecular recognition and penetration agents, respectively. The SERS platform surface was characterized by cyclic voltammetry, contact angle measurements, AFM (atomic force microscopy) and Raman spectroscopy. Optimum values of the parameters such as pH, time and (3-MBA/1-DT) molar ratio were also examined for the glucose determination. The analytical performance was evaluated and linear calibration graphs were obtained in the glucose concentration range of 2-16 mM, which is also in the range of the blood glucose levels, and the detection limit was found to be 0.5 mM. As a result, the SERS platform was also used for the determination of glucose in plasma samples.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Paper membrane-based SERS platform for the determination of glucose in blood samples
    (Springer Heidelberg, 2015) Torul, Hilal; Çiftçi, Hakan; Çetin, Demet; Suludere, Zekiye; Boyacı, İsmail Hakkı; Tamer, Uğur
    In this report, we present a paper membrane-based surface-enhanced Raman scattering (SERS) platform for the determination of blood glucose level using a nitrocellulose membrane as substrate paper, and the microfluidic channel was simply constructed by wax-printing method. The rod-shaped gold nanorod particles were modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT) molecules and used as embedded SERS probe for paper-based microfluidics. The SERS measurement area was simply constructed by dropping gold nanoparticles on nitrocellulose membrane, and the blood sample was dropped on the membrane hydrophilic channel. While the blood cells and proteins were held on nitrocellulose membrane, glucose molecules were moved through the channel toward the SERS measurement area. Scanning electron microscopy (SEM) was used to confirm the effective separation of blood matrix, and total analysis is completed in 5 min. In SERS measurements, the intensity of the band at 1070 cm(-1) which is attributed to B-OH vibration decreased depending on the rise in glucose concentration in the blood sample. The glucose concentration was found to be 5.43 +/- 0.51 mM in the reference blood sample by using a calibration equation, and the certified value for glucose was 6.17 +/- 0.11 mM. The recovery of the glucose in the reference blood sample was about 88 %. According to these results, the developed paper-based microfluidic SERS platform has been found to be suitable for use for the detection of glucose in blood samples without any pretreatment procedure. We believe that paper-based microfluidic systems may provide a wide field of usage for paper-based applications.

| Kırıkkale Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kırıkkale Üniversitesi, Kırıkkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim