Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Yalcinkaya, Meryem" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Confidence interval estimation of Weibull lower percentiles in small samples via Bayesian inference
    (Elsevier Sci Ltd, 2017) Yalcinkaya, Meryem; Birgoren, Burak
    Weibull distribution has been vastly used for modeling fracture strength of ceramic and composite materials. Confidence interval estimation of Weibull parameters and percentiles in small samples has been an important concern due to high experimental costs. It was shown previously that in classical inference the Maximum Likelihood Estimation Method is the best method among several alternatives for estimating 95% one-sided confidence lower bounds on the 1st and 10th Weibull percentiles, namely A-basis and B-basis material properties. This study proposes the Bayesian Weibull Method as an alternative using the information that ceramic and composite materials have increasing failure rates, which requires the Weibull shape parameter to be at least 1. Through Monte Carlo simulations, it is shown that the performance of the Bayesian Weibull Method is superior in that it achieves the precision levels of the Maximum Likelihood Estimation Method with significantly smaller sample sizes. (C) 2017 Elsevier Ltd. All rights reserved.
  • [ X ]
    Öğe
    Estimation of Confidence Intervals and Lower Bounds for Various Weibull Percentiles
    (World Scientific Publ Co Pte Ltd, 2023) Birgoren, Burak; Yalcinkaya, Meryem
    The design allowables are derived statistically from measured material properties, and the Weibull distribution is one of the most commonly used distributions for statistical modeling. A- and B-basis design allowables are frequently used; they correspond to the confidence lower bounds for the 1st and 10th percentiles, respectively, with a confidence level of 95%. The maximum likelihood method is generally recommended and commonly used for parameter and confidence lower bound estimation. On the other hand, designers are also interested in confidence lower bounds for other percentiles, and in general, confidence intervals to specify uncertainty in percentile estimates. Monte-Carlo simulation methods have been proposed for this purpose; however, they are not easy to code and take a long time to run to obtain reliable results. As an easy-to-use alternative, this study proposes approximate polynomial functions of sample size for various percentiles and confidence levels. The coefficients of the functions are presented in tabular form for each combination of percentiles and confidence levels. They eliminate the need for simulations and provide precise confidence intervals and lower bounds for a large set of Weibull percentiles.

| Kırıkkale Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kırıkkale Üniversitesi, Kırıkkale, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim