Yazar "Yilbasi, Zeki" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Energy, exergy and exergoeconomic assessment of a compression-ignition engine powered by 1-pentanol, 1-hexanol or 1-heptanol/hempseed oil biodiesel/diesel(Inderscience Enterprises Ltd, 2023) Yilbasi, Zeki; Yesilyurt, Murat Kadir; Arslan, Mevlut; Yaman, HayriIn this study, thermodynamic and economic analyses were performed by evaluating performance data obtained by operating diesel, biodiesel, and alcohol blends. The highest energy and exergy efficiencies were computed for B20Hx10 at full load. The maximum entropy production was found at full load for B20Pe30. Similar to efficiencies, exergoeconomic data were also greatly influenced by the increase in the load. Besides that, the increase in the rate of higher alcohol negatively affected fuel costs. To conclude, the crankshaft work cost flow rate was $1.27/h for D100, $1.73/h for B20, and $5.86/h for B20Hx10 at the lowest load.Öğe The industrial-grade hemp (Cannabis sativa L.) seed oil biodiesel application in a diesel engine: combustion, harmful pollutants, and performance characteristics(Edp Sciences S A, 2022) Yilbasi, Zeki; Yesilyurt, Murat Kadir; Yaman, Hayri; Arslan, MevlutThe core focus of the present investigation is regarding biodiesel production from industrial hemp seed oil applying single-stage homogenous catalyzed transesterification process obtaining high yield of methyl ester. The engine tests were carried out on a single-cylinder, four-stroke, water-cooled, unmodified diesel engine operating with hemp seed oil methyl ester as well as its blends with conventional diesel fuel. The experimental findings of the test fuels were compared with those from diesel. The results pointed out that the performance and combustion behaviors of biodiesel fuels are just about in line with those of diesel fuel propensity. The specific fuel consumption for 5% biodiesel blend (0.291 kg/kW h), 10% biodiesel blend (0.305 kg/kW h), and 20% biodiesel blend (0.312 kg/kW h) blends at full load was closer to diesel (0.275 kg/kW h). In the meantime, the thermal efficiency for biodiesel was found to be at the range of 15.98-24.97% and it was slightly lower than that of diesel (18.10-29.85%) at the working loads. On the other hand, the harmful pollutant characteristics of carbon monoxide, hydrocarbon, and smoke opacity for biodiesel and its blends were observed to be lower in comparison with diesel during the trials. However, the oxides of nitrogen emissions for biodiesel were monitored to be as 6.85-15.40 g/kW h which was remarkably higher than that of diesel (4.71-8.63 g/kW h). Besides that, the combustion behaviors of biodiesel and its blends with diesel showed much the same followed those of diesel. Namely, the duration of ignition delay of biodiesel-diesel blends was shorter than that of diesel fuel because of the higher cetane number specification of the methyl ester. The highest gas pressures inside the cylinder as well as the rates of the heat release of biodiesel including test fuels are lower in contrast to the diesel due to the shorter ignition delay. It could be concluded that the utilization of biodiesel produced from industrial hemp seed oil in the diesel engine up to 20% (by vol.) will decrease the consumption of diesel and environmental pollution, especially in developing countries.Öğe Thermodynamic and economic analyses of a spark-ignition engine operating with bioethanol-gasoline blends(Taylor & Francis Inc, 2023) Dogan, Battal; Yilbasi, Zeki; Yaman, Hayri; Yesilyurt, Murat KadirThe problems associated with the use of fossil energy sources, as well as the constant rise in energy demand, have increased the importance of biofuels. In this study, the use of gasoline/bioethanol dual fuel blend as an alternative fuel in an SI engine was investigated by experiments and thermodynamic analysis. In experimental studies, performance and emission tests were performed at three different bioethanol ratios (10%-30%) at five different engine speeds (1200-1600 rpm). Thermodynamic and economic analyses were accomplished considering fuel consumption, torque, temperatures of cooling water and exhaust gases, and emissions obtained from these tests. Besides that, the sustainability index value of the fuel blends was taken into account. The augmentation of bioethanol fraction in the mixtures leads to a decline in thermal and exergy efficiencies. When the speed is 1600 rpm, the thermal and exergetic efficiencies of B0 fuel are 2.66% and 3.73% higher than those of B30 fuel, respectively. When the bioethanol concentration in the blends increased, the destroyed exergy increased. The exergy lost for G100, B10, B20, and B30 fuel blends were calculated as 6.822, 6.985, 6.908, and 7.017 respectively when the speed was adjusted to be 1200 rpm. The exergetic efficiency values for G100 and B30 at 1200 rpm were observed to be 36.82% and 35.39%, respectively. Based on the exergoeconomic analysis, the rise in the concentration of bioethanol in the blends increases the fuel cost rate, and accordingly, the unit cost of engine power exergy increases. The unit cost of engine power exergy in B30 fuel is approximately 50% higher than that of G100 fuel. The exergoeconomic factor was found to be 2.52 for G100, 1.893 for B10, 1.511 for B20, and 1.217 for B30 at the speed of 1200 rpm. The minimum sustainability index in all engine speeds in bioethanol fuel blends was calculated as 1.548.Öğe Understanding the performance, emissions, and combustion behaviors of a DI diesel engine using alcohol/hemp seed oil biodiesel/diesel fuel ternary blends: Influence of long-chain alcohol type and concentration(Edp Sciences S A, 2023) Yilbasi, Zeki; Yesilyurt, Murat Kadir; Arslan, Mevluet; Yaman, HayriIn this study, it was aimed to examine the influences of biodiesel-diesel-higher alcohol (1-pentanol, 1-hexanol, and 1-heptanol) blends on the performance, emission and combustion behaviors of a single-cylinder diesel engine. The tests were performed at a fixed speed of 1500 rpm and variable loads (25%, 50%, 75%, and 100%). For the tests, 80% diesel and 20% hemp seed oil biodiesel were blended and called as B20. Biodiesel fuel was produced by transesterification from hemp seed oil in the presence of methanol and potassium hydroxide for the preparation of B20 binary test fuel and other ternary fuels. Furthermore, nine ternary blend fuels [20% HSOB + 70%, 60% and 50% diesel, respectively + 10%, 20% and 30% higher alcohol (pentanol, hexanol and heptanol) respectively] were prepared. The calculations made with the experimental data revealed that the minimum brake specific energy consumption values were 12,48 MJ/kW h, 13,06 MJ/kW h, 13,27 MJ/kW h, 13,35 MJ/kW h, 13,47 MJ/kW h, and 13,59 MJ/kW h, respectively, for diesel fuel at full load, for fuels B20, B20Hx10, B20Hp10, B20Hx20 and B20Pe10, the maximum brake thermal efficiency values were obtained as 28.85%, 27.56%, 27.14%, 26.97%, 26.73% and 26.49%, respectively, for the same fuels at the same load. The increment in higher alcohol concentration in the blend delayed start of combustion and therefore the ignition delay period was prolonged. In the fuel line pressure data, changes were observed depending on the amount, viscosity and density of the fuel. Furthermore, B20Hx10 and B20Hp10 fuels gave the maximum in-cylinder pressure, heat release rate, average gas temperature and pressure rise rate values after diesel and biodiesel. The addition of biodiesel and higher alcohol to diesel fuel resulted in a decrease in NOX, CO and unburned HC and smoke emissions and an increase in CO2. NOX, CO and unburned HC values of higher alcohol blended fuels at full load showed lower results, between 3.04-22.24%, 22.85-56.35% and 5.44-22.83%, respectively, compared to diesel fuel. It can be concluded that the use of hemp seed oil biodiesel and higher alcohol in the diesel engine will make a significant contribution to the reduction of NOX emissions.