Yazar "Gencer, Cevriye" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Ahp Model For Transition From IPv4 TO IPv6(Gazi Univ, Fac Engineering Architecture, 2011) Aydogan, Emel Kizilkaya; Soylu, M. Yekta; Gencer, Cevriye; Cetin, Suna; Soysal, Murat; Bektas, Onur; Sagiroglu, SerefIn this study, one of multi criterion decision making methods, Analytic Hierarchy Process (AHP), was used to decide the best transition mechanism from IPv4 to IPv6 based on "National IPv6 Protocol Infrastructure Design and Transition" Project. The contributions of this study are summarized as being the first study in the field, establishing the parameters for this transition, defining criteria sets to this field for the first time and applying AHP to this problem. In addition to those, questionnaires were prepared and applied to define the best transition strategies. The results were then obtained from Super Decisions 1.6.0 software package for achieving suitable transition mechanisms. It is expected that this study will help and contribute to the state organizations to decide suitable transition mechanisms to IPv6, to use the country resources more effective, to shorten the transition time and finally to present systematic and scientific approach to this transition.Öğe Heterojen Araç Filolu Eş Zamanlı Dağıtım-Toplamalı Araç Rotalama Problemi İçin Bir Karar Destek Sistemi(Kırıkkale Üniversitesi, 2011) Çetin, Suna; Özkütük, Emre; Gencer, CevriyeIn this study a new heuristic algorithm is developed for the heterogeneous fleet vehicle routing problem with simultaneous delivery and pickup (heterogeneous fleet VRPSPD). A decision support system (DSS), which is based on this algorithm, is composed. The decision support system determines the vehicle fleet composition and the routes, which are originated at a central depot and serve a set of customers with known pick up and delivery demand with minimum cost. Visual basic 6.0 is used to code the interface of DSS and C++ programming language is used to code the computation algorithm. Since there are not benchmarking problems in the literature, the algorithm is tested using the real data of a transportation firm and the results derived are compared to the current situation by distance and total cost.Öğe Heterojen Araç Filolu Zaman Pencereli Eş Zamanlı Dağıtım-Toplamalı Araç Rotalama Problemleri: Matematiksel Model(Kırıkkale Üniversitesi, 2011) Çetin, Suna; Gencer, CevriyeBu çalışmada heterojen araç filolu kesin zaman pencereli eş zamanlı dağıtım-toplamalı araç rotalama problemleri (HKZP_EZDT_ARP) tanımlamaktadır. Tanımlanan problem için matematiksel model önerilmiş ve literatürde yer alan Solomon test problemleri talep açısından düzenlenerek; 5,10,15,20 müşterili örnekler için denenmiştir. Ayrıca modelin amaç fonksiyonu literatürden farklı olarak maliyet ya da mesafe minimizasyonu yerine zaman penceresinden kaynaklanan beklemelerin en azlanması olarak ele alınmıştır.Öğe Kesin zaman pencereli - eş zamanlı dağıtım toplamalı araç rotalama problemi: matematiksel model(2010) Çetin, Suna; Gencer, CevriyeBu çalışmada, kesin zaman pencereli-eşzamanlı dağıtım toplamalı araç rotalama problemi tanımlanmış ve matematiksel modeli geliştirilmiştir. Genellikle araç rotalama problemlerinde amaç, katedilen mesafenin veya taşıma maliyetinin enazlanmasıdır. Literatür incelendiğinde zaman pencereli araç rotalama problemlerinde de aynı amaç fonksiyonlarının tanımlandığı görülmektedir. Oysa zaman pencereli araç rotalama problemlerinde zaman penceresinden kaynaklanan beklemelerin dikkate alınması gerekmektedir. Çalışmada, tanımlanan yeni problemin matematiksel modelinde, amaç fonksiyonu beklemelerin en küçüklenmesi olarak alınmış; Solomon’un test verileri eşzamanlı dağıtım toplama problemlerine uygun hale getirmek için düzenlenmiş ve GAMS paket programı ile sonuçlar elde edilmiştir.Öğe Vehicle routing problems with hard time windows and simultaneous pick up and delivery: a mathematical model(Gazi Univ, Fac Engineering Architecture, 2010) Cetin, Suna; Gencer, CevriyeIn this study, vehicle routing problems with hard time windows and simultaneous pick up and delivery are determined and mathematical model is developed. Generally the goal of vehicle routing problems is minimization of travelling distance or travelling cost. In the literature it is observed that vehicle routing problems with time windows have also the same goals with vehicle routing problems. However, waiting time resulted from time windows must be considered for vehicle routing problems with time windows. In this study, objective function of the mathematical model of the determined problem is chosen as waiting time minimization. Solomon Benchmark Problems are revised to adapt for the problem structure and results are obtained by using GAMS.